Abstract:Despite the need for large-scale retrofit of UK housing to meet emissions reduction targets, progress to date has been slow and domestic energy efficiency policies have struggled to accelerate housing retrofit processes. There is a need for housing retrofit policies that overcome key barriers within the retrofit sector while maintaining economic viability for customers, funding organizations, and effectively addressing UK emission reductions and fuel poverty targets. In this study, we use a simple assessment framework to assess three policies (the Variable Council Tax, the Variable Stamp Duty Land Tax, and Green Mortgage) proposed to replace the UK's current major domestic retrofit programme known as the Energy Company Obligation (ECO). We show that the Variable Council Tax and Green Mortgage proposals have the greatest potential for overcoming the main barriers to retrofit policies while maintaining economic viability and contributing to high-level UK targets. We also show that, while none of the assessed schemes are capable of overcoming all retrofit barriers on their own, a mix of all three policies could address most barriers and provide key benefits such as wide coverage of property markets, operation on existing financial infrastructures, and application of a "carrot-and-stick" approach to incentivize retrofit. Lastly, we indicate that the specific support and protection of fuel-poor households cannot be achieved by a mix of these policies and a complementary scheme focused on fuel-poor households is required.
Climate-forced changes in atmospheric circulation patterns can pose challenges to the development of an efficient wind energy industry. The predicted shifts in circumpolar storm tracks and pressure gradients have a significant effect on local wind resource availability, and impact the wind energy industry in a time of crucial expansion. This study uses Scotland as a case study to model the impact of the SRES A1B climate change scenario on current wind resource availability and wind power potential at two wind farms: Gordonbush (NE Scotland) and Dun Law (SE Scotland). The results predicted an increase of wind resource availability at Gordonbush, and a decrease at Dun Law, leading to corresponding changes in net annual electricity production: a 31.7% increase at Gordonbush and a 31.8% decrease at Dun Law by the year 2040. The majority of observed changes can be attributed to climate-forced changes in atmospheric circulation patterns; however, this research also shows the impact of turbine specifications and site characteristics on the vulnerability of wind power production to climate change. Further work is needed to establish a robust relationship between large-scale climate forcing and local wind resource availability, and to integrate this relationship into the assessment framework of on-shore wind farms around the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.