Contusion injuries are a very common form of both athletic and non-athletic injury, that effect muscle function. Treatments to augment the normal repair and regeneration processes are important for a wide variety of patients. Therapeutic ultrasound has been claimed to promote tissue repair, especially by enhancing cell proliferation and protein synthesis. The present study aimed to investigate the effect of therapeutic pulsed ultrasound (TPU) on parameters of oxidative stress, namely thiobarbituric acid-reactive substances (TBARS), protein carbonyl content and the activities of antioxidant enzymes, catalase and superoxide dismutase (SOD), in skeletal muscle after injury. Wistar rats were submitted to an animal model of muscle (gastrocnemius) laceration. TPU was used once a day. One, three or five days after muscle laceration, the animals were killed by decapitation and oxidative stress parameters were evaluated. Serum CK levels were increased in muscle-injured animals, indicating that the laceration animal model was successful. TBARS were not altered after muscle injury, when compared to the sham group. Protein carbonyl content was increased after muscle laceration. Catalase and SOD activities were increased 1 day after muscle injury and not altered at days 3 and 5. TPU decreased TBARS levels after muscle laceration when compared to injured muscle animals without treatment. Protein carbonyl content evaluation presented similar results. It is tempting to speculate that TPU seems to protect the tissue from oxidative injury. TPU diminished catalase and SOD activities, especially on the first day following muscle laceration.
Tetragonisca angustula honey was fractioned in a SiO 2 column to furnish three fractions (A-C) in which four hydroxycinnamic acid-Spermidine amides (HCAAs), known as N′, N″, N‴-tris-p-coumaroyl spermidine, N′, N″-dicaffeoyl, N‴-coumaroyl spermidine, N′, N″, N‴-tris-caffeoyl spermidine and N′, N″dicaffeoyl and N‴-feruloyl spermidine were identified in the fractions B and C by electrospray ionization tandem mass spectrometry. A primary culture model previously infected with Neospora caninum (72 h) was used to evaluate the honey fractions (A-C) for two-time intervals: 24 and 72 h. Parasitic reduction ranged from 38% on fraction C (12.5 µg/ml), after 24 h, to 54% and 41% with fractions B and C (25 µg/ml) after 72 h of treatment, respectively. Additionally, HCAAs did not show any cell toxicity for 24 and 72 h. For infected cultures (72 h), the active fractions B (12.5 µg/ml) and C (25 µg/ml) decreased their NO content. In silico studies suggest that HCAAs may affect the parasite's redox pathway and improve the oxidative effect of NO released from infected cells. Here, we presented for the first time, that HCAAs from T. angustula honey have the potential to inhibit the growth of N. caninum protozoa. K E Y W O R D S hydroxycinnamic acid-spermidine amides, immune response, Neospora caninum, nitric oxide, nitrogenous compounds, Tetragonisca angustula honey | 1105 LIMA et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.