Information on the risk factors for COVID-19 mortality in low- and middle-income countries is still scarce. In this retrospective cohort study, we analyzed the factors associated with COVID-19 mortality in hospitalized patients in a poor area of Brazil. Logistic regression was used to identify factors independently associated with mortality, including gender, age, and the presence of underlying medical conditions. A total of 1,207 patients were included in the analysis, and a 1.5-fold increase in COVID-19 mortality was found among patients aged > 65 years with hypertension and diabetes (odds ratio [OR]: 1.50, 95% CI: 1.02–2.19). Moreover, infectious disease (OR: 4.31, 95% CI: 1.39–13.39), kidney disease (OR: 2.59, 95% CI: 1.27–5.27), and heart disease (OR: 2.00, 95% CI: 1.31–3.04) were also predictive for COVID-19 in-hospital death. This large cohort provides important data on potential factors associated with COVID-19 mortality in Brazil.
Schwann cells were identified in the tumor surrounding area prior to initiate the invasion process underlying connective tissue. These cells promote cancer invasion through direct contact, while paracrine signaling and matrix remodeling are not sufficient to proceed. Considering the intertwined structure of signaling, regulatory, and metabolic processes within a cell, we employed a genome-scale biomolecular network. Accordingly, a meta-analysis of Schwann cells associated transcriptomic datasets was performed, and the core information on differentially expressed genes (DEGs) was obtained by statistical analyses. Gene set over-representation analyses was performed on core DEGs to identify significantly functional and pathway enrichment analysis between Schwann cells and, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). DEGs were further integrated with genomescale human biomolecular networks. miRNAs were proposed by the reconstruction of a transcriptional and post-transcriptional regulatory network. Moreover, microarraybased transcriptome profiling was performed, and the prognostic power of selected dedifferentiated Schwann cell biomolecules was predicted. We observed that pathways associated with Schwann cells dedifferentiation was overexpressed in lung cancer samples. However, genes associated with Schwann cells migration inhibition system were downregulated. Besides, miRNA targeting those pathways were also deregulated. In this study, we report valuable data for further experimental and clinical analysis, because the proposed biomolecules have significant potential as systems biomarkers for screening or for therapeutic purposes in perineural invasion of lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.