Pansharpening aims at fusing a multispectral and a panchromatic image, featuring the result of the processing with the spectral resolution of the former and the spatial resolution of the latter. In the last decades, many algorithms addressing this task have been presented in the literature. However, the lack of universally recognized evaluation criteria, available image data sets for benchmarking, and standardized implementations of the algorithms makes a thorough evaluation and comparison of the different pansharpening techniques difficult to achieve. In this paper, the authors attempt to fill this gap by providing a critical description and extensive comparisons of some of the main state-of-the-art pansharpening methods. In greater details, several pansharpening algorithms belonging to the component substi- tution or multiresolution analysis families are considered. Such techniques are evaluated through the two main protocols for the assessment of pansharpening results, i.e., based on the full- and reduced-resolution validations. Five data sets acquired by different satellites allow for a detailed comparison of the algorithms, characterization of their performances with respect to the different instruments, and consistency of the two validation procedures. In addition, the implementation of all the pansharpening techniques considered in this paper and the framework used for running the simulations, comprising the two validation procedures and the main assessment indexes, are collected in a MATLAB toolbox that is made available to the community
This paper compares two general and formal solutions to the problem of fusion of multispectral images with high-resolution panchromatic observations. The former exploits the undecimated discrete wavelet transform, which is an octave bandpass representation achieved from a conventional discrete wavelet transform by omitting all decimators and upsampling the wavelet filter bank. The latter relies on the generalized Laplacian pyramid, which is another oversampled structure obtained by recursively subtracting from an image an expanded decimated lowpass version. Both the methods selectively perform spatial-frequencies spectrum substitution from an image to another. In both schemes, context dependency is exploited by thresholding the local correlation coefficient between the images to be merged, to avoid injection of spatial details that are not likely to occur in the target image. Unlike other multiscale fusion schemes, both the present decompositions are not critically subsampled, thus avoiding possible impairments in the fused images, due to missing cancellation of aliasing terms. Results are presented and discussed on SPOT data
This paper introduces a novel approach for evaluating the quality of pansharpened multispectral (MS) imagery without resorting to reference originals. Hence, evaluations are feasible at the highest spatial resolution of the panchromatic (PAN) sensor. Wang and Bovik's image quality index (QI) provides a statistical similarity measurement between two monochrome images. The QI values between any couple of MS bands are calculated before and after fusion and used to define a measurement of spectral distortion. Analogously, QI values between each MS band and the PAN image are calculated before and after fusion to yield a measurement of spatial distortion. The rationale is that such QI values should be unchanged after fusion, i.e., when the spectral information is translated from the coarse scale of the MS data to the fine scale of the PAN image. Experimental results, carried out on very high-resolution Ikonos data and simulated Pléiades data, demonstrate that the results provided by the proposed approach are consistent and in trend with analysis performed on spatially degraded data. However, the proposed method requires no reference originals and is therefore usable in all practical cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.