The results of the present study confirm that APM is a carcinogenic agent in multiple sites in rodents, and that this effect is induced in two species, rats (males and females) and mice (males). No carcinogenic effects were observed in female mice. Am. J. Ind. Med. 53:1197-1206, 2010. © 2010 Wiley-Liss, Inc.
BackgroundThis proof-of-principle study examines whether postnatal, low-dose exposure to environmental chemicals modifies the composition of gut microbiome. Three chemicals that are widely used in personal care products—diethyl phthalate (DEP), methylparaben (MPB), triclosan (TCS)—and their mixture (MIX) were administered at doses comparable to human exposure to Sprague-Dawley rats from birth through adulthood. Fecal samples were collected at two time points: postnatal day (PND) 62 (adolescence) and PND 181 (adulthood). The gut microbiome was profiled by 16S ribosomal RNA gene sequencing, taxonomically assigned and assessed for diversity.ResultsMetagenomic profiling revealed that the low-dose chemical exposure resulted in significant changes in the overall bacterial composition, but in adolescent rats only. Specifically, the individual taxon relative abundance for Bacteroidetes (Prevotella) was increased while the relative abundance of Firmicutes (Bacilli) was reduced in all treated rats compared to controls. Increased abundance was observed for Elusimicrobia in DEP and MPB groups, Betaproteobacteria in MPB and MIX groups, and Deltaproteobacteria in TCS group. Surprisingly, these differences diminished by adulthood (PND 181) despite continuous exposure, suggesting that exposure to the environmental chemicals produced a more profound effect on the gut microbiome in adolescents. We also observed a small but consistent reduction in the bodyweight of exposed rats in adolescence, especially with DEP and MPB treatment (p < 0.05), which is consistent with our findings of a reduced Firmicutes/Bacteroidetes ratio at PND 62 in exposed rats.ConclusionsThis study provides initial evidence that postnatal exposure to commonly used environmental chemicals at doses comparable to human exposure is capable of modifying the gut microbiota in adolescent rats; whether these changes lead to downstream health effects requires further investigation.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-016-0173-2) contains supplementary material, which is available to authorized users.
BackgroundGlyphosate-based herbicides (GBHs) are broad-spectrum herbicides that act on the shikimate pathway in bacteria, fungi, and plants. The possible effects of GBHs on human health are the subject of an intense public debate for both its potential carcinogenic and non-carcinogenic effects, including its effects on microbiome. The present pilot study examines whether exposure to GBHs at doses of glyphosate considered to be “safe” (the US Acceptable Daily Intake - ADI - of 1.75 mg/kg bw/day), starting from in utero, may modify the composition of gut microbiome in Sprague Dawley (SD) rats.MethodsGlyphosate alone and Roundup, a commercial brand of GBHs, were administered in drinking water at doses comparable to the US glyphosate ADI (1.75 mg/kg bw/day) to F0 dams starting from the gestational day (GD) 6 up to postnatal day (PND) 125. Animal feces were collected at multiple time points from both F0 dams and F1 pups. The gut microbiota of 433 fecal samples were profiled at V3-V4 region of 16S ribosomal RNA gene and further taxonomically assigned and assessed for diversity analysis. We tested the effect of exposure on overall microbiome diversity using PERMANOVA and on individual taxa by LEfSe analysis.ResultsMicrobiome profiling revealed that low-dose exposure to Roundup and glyphosate resulted in significant and distinctive changes in overall bacterial composition in F1 pups only. Specifically, at PND31, corresponding to pre-pubertal age in humans, relative abundance for Bacteriodetes (Prevotella) was increased while the Firmicutes (Lactobacillus) was reduced in both Roundup and glyphosate exposed F1 pups compared to controls.ConclusionsThis study provides initial evidence that exposures to commonly used GBHs, at doses considered safe, are capable of modifying the gut microbiota in early development, particularly before the onset of puberty. These findings warrant future studies on potential health effects of GBHs in early development such as childhood.Electronic supplementary materialThe online version of this article (10.1186/s12940-018-0394-x) contains supplementary material, which is available to authorized users.
BackgroundGlyphosate-based herbicides (GBHs) are broad-spectrum herbicides that act on the shikimate pathway in bacteria, fungi, and plants. The possible effects of GBHs on human health are the subject of an intense public debate for both its potential carcinogenic and non-carcinogenic effects, including potential effects on the endocrine system The present pilot study examine whether exposure to GBHs at the dose of glyphosate considered to be “safe” (the US Acceptable Daily Intake - ADI - of 1.75 mg/kg bw/day), starting from in utero life, affect the development and endocrine system across different life stages in Sprague Dawley (SD) rats.MethodsGlyphosate alone and Roundup Bioflow, a commercial brand of GBHs, were administered in drinking water at 1.75 mg/kg bw/day to F0 dams starting from the gestational day (GD) 6 (in utero) up to postnatal day (PND) 120. After weaning, offspring were randomly distributed in two cohorts: 8 M + 8F/group animals belonging to the 6-week cohort were sacrificed after puberty at PND 73 ± 2; 10 M + 10F/group animals belonging to the 13-week cohort were sacrificed at adulthood at PND 125 ± 2. Effects of glyphosate or Roundup exposure were assessed on developmental landmarks and sexual characteristics of pups.ResultsIn pups, anogenital distance (AGD) at PND 4 was statistically significantly increased both in Roundup-treated males and females and in glyphosate-treated males. Age at first estrous (FE) was significantly delayed in the Roundup-exposed group and serum testosterone concentration significantly increased in Roundup-treated female offspring from the 13-week cohort compared to control animals. A statistically significant increase in plasma TSH concentration was observed in glyphosate-treated males compared with control animals as well as a statistically significant decrease in DHT and increase in BDNF in Roundup-treated males. Hormonal status imbalances were more pronounced in Roundup-treated rats after prolonged exposure.ConclusionsThe present pilot study demonstrate that GBHs exposure, from prenatal period to adulthood, induced endocrine effects and altered reproductive developmental parameters in male and female SD rats. In particular, it was associated with androgen-like effects, including a statistically significant increase of AGDs in both males and females, delay of FE and increased testosterone in female.Electronic supplementary materialThe online version of this article (10.1186/s12940-019-0453-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.