The dentate nucleus of the cerebellum may appear as hyperintense on unenhanced T1 magnetic resonance images (MRIs) of the brain. Recently, T1 signal hyperintensity has received attention owing to data on the association of this finding with the history of multiple injections of gadolinium-based contrast agents, specifically gadodiamide, in patients with multiple sclerosis and brain metastases. We conducted a retrospective study on patients with a meningioma who had routinely undergone follow-up enhanced MRI scans with gadodiamide. Across a time interval of 18 months (from January 2013 to July 2014), we identified 102 consecutive patients eligible for this study. A significant increase in T1 hyperintensity of the dentate nuclei of the cerebellum on nonenhanced scans was observed between the first and the last MRI in the group of patients with a history of at least 6 enhanced MRI scans (P < 0.01), whereas no differences were observed in the group with 1 to 5 enhanced MRI scans (P = 0.74). Further research is necessary to shed light on the mechanism of the T1 hyperintensity as well as on the histological and microstructural appearance of the dentate nucleus after multiple intravenous injections of gadodiamide. The finding raises the question of substantial dechelation of this agent in patients with normal renal function.
Gastro-entero-pancreatic neuroendocrine neoplasia (GEP-NENs) are rare tumors, but their frequency is increasing. Neuroendocrine tumors normally express somatostatin (SST) receptors (SSTR) on cell surface, especially G1 and G2 stage tumors, but they can show a dedifferentiation in their clinical history as they become more aggressive. Somatostatin receptor imaging has previously been performed with a gamma camera using [111In]In or [99mTc]Tc-labelled compounds, while [68Ga]Ga-labelled compounds and PET/CT imaging has recently become the gold standard for the diagnosis and management of these tumors. Moreover, in the last few years 18F-fluorodeoxyglucose ([18F]FDG) PET/CT has emerged as an important tool to define tumor aggressiveness and give relevant prognostic information, particularly when coupled with [68Ga]Ga-labelled SST analogues PET/CT. This review focuses on the importance of combined imaging with [68Ga]Ga-labelled SST analogues and [18F]FDG for the management of GEP-NENs.
The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.
Background
The evolution of radiation necrosis (RN) varies depending on the combination of radionecrotic tissue and active tumor cells. In this study, we characterized the long-term metabolic evolution of RN by sequential PET/CT imaging with 3,4‑dihydroxy‑6‑[ 18F]‑fluoro-l‑phenylalanine (F-DOPA) in patients with brain metastases following stereotactic radiosurgery (SRS).
Methods
Thirty consecutive patients with 34 suspected radionecrotic brain metastases following SRS repeated F-DOPA PET/CT every 6 months or yearly in addition to standard MRI monitoring. Diagnoses of local progression (LP) or RN were confirmed histologically or by clinical follow-up. Semiquantitative parameters of F-DOPA uptake were extracted at different time points, and their diagnostic performances were compared with those of corresponding contrast-enhanced MRI.
Results
Ninety-nine F-DOPA PET scans were acquired over a median period of 18 (range: 12-66) months. Median follow-up from the baseline F-DOPA PET/CT was 48 (range 21-95) months. Overall, 24 (70.6%) and 10 (29.4%) lesions were classified as RN and LP, respectively. LP occurred after a median of 18 (range: 12-30) months from baseline PET. F-DOPA tumor-to-brain ratio (TBR) and relative standardized uptake value (rSUV) increased significantly over time in LP lesions, while remaining stable in RN lesions. The parameter showing the best diagnostic performances was rSUV (accuracy = 94.1% for the optimal threshold of 1.92). In contrast, variations of the longest tumor dimension measured on contrast-enhancing MRI did not distinguish between RN and LP.
Conclusions
F-DOPA PET has a high diagnostic accuracy for assessing the long-term evolution of brain metastases following SRS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.