In this article we present the synthesis, characterization, and in vitro biological and biochemical activities of new chalcogenozidovudine derivatives as antioxidant (inhibition of TBARS in brain membranes and thiol peroxidase-like activity) as well as antitumoral agents in bladder carcinoma 5637. A prominent response was obtained for the selected chalcogenonucleosides, showing effective antioxidant and antitumoral activities.
This study was designed to examine the antioxidant activity in vitro of novel mono- and diselenide compounds. We compared whether the formation of p-methyl-selenol from compounds 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1,2-dip-tolyldiselenide (C4) and o-methoxy-selenol from compounds 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and 1,2-bis(2-methoxyphenyl)diselenide (C3) may be involved in their antioxidant effects. The compounds were tested against Fe(II) and sodium nitroprusside (SNP)-induced lipid peroxidation in rat brain and liver homogenates. Likewise, the antioxidant capacity of the compounds was assessed by their ability to decolorize the DPPH radical as well as the Fe(II) chelating assay through the reduction of molybdenum(VI) (Mo6+) to molybdenum(V) (Mo5+). This colorimetric assay was also used to quantify thiol peroxidase (GPx) and oxidase activity and thioredoxin reductase (TrxR) activity. The results showed that the novel selenide compounds inhibit the thiobarbituric acid reactive species (TBARS) induced by different pro-oxidants, but the monoselenides effects were significant only at concentrations higher than the concentrations of the diselenides. Similarly, the total antioxidant activity was higher in the diselenides. Moreover, GPx and TrxR activity was only observed for the diselenides, which indicates that these compounds are more stable selenol molecules than monoselenides.
This article presents the preparation and biological activities of new 5'-arylchalcogeno-3-aminothymidine derivatives as antioxidants (inhibition of lipid peroxidation, scavenging of the free radical 2,2-diphenylpicrylhydrazyl and demonstration of a thiol peroxidase-like activity) as well as antitumoral agents against bladder carcinoma 5637. The chalcogeno-aminothymidines presented prominent activity in the tests for both biological properties, showing a direct relation with the chalcogenium atom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.