The capacity to map traits over large cohorts of individuals—phenomics—lags far behind the explosive development in genomics. For microbes, the estimation of growth is the key phenotype because of its link to fitness. We introduce an automated microbial phenomics framework that delivers accurate, precise, and highly resolved growth phenotypes at an unprecedented scale. Advancements were achieved through the introduction of transmissive scanning hardware and software technology, frequent acquisition of exact colony population size measurements, extraction of population growth rates from growth curves, and removal of spatial bias by reference-surface normalization. Our prototype arrangement automatically records and analyzes close to 100,000 growth curves in parallel. We demonstrate the power of the approach by extending and nuancing the known salt-defense biology in baker’s yeast. The introduced framework represents a major advance in microbial phenomics by providing high-quality data for extensive cohorts of individuals and generating well-populated and standardized phenomics databases
The capacity to map traits over large cohorts of individuals-phenomics-lags far behind the explosive development in genomics. For microbes, the estimation of growth is the key phenotype because of its link to fitness. We introduce an automated microbial phenomics framework that delivers accurate, precise, and highly resolved growth phenotypes at an unprecedented scale. Advancements were achieved through the introduction of transmissive scanning hardware and software technology, frequent acquisition of exact colony population size measurements, extraction of population growth rates from growth curves, and removal of spatial bias by reference-surface normalization. Our prototype arrangement automatically records and analyzes close to 100,000 growth curves in parallel. We demonstrate the power of the approach by extending and nuancing the known salt-defense biology in baker's yeast. The introduced framework represents a major advance in microbial phenomics by providing high-quality data for extensive cohorts of individuals and generating well-populated and standardized phenomics databases KEYWORDS
BackgroundPhenomics is a field in functional genomics that records variation in organismal phenotypes in the genetic, epigenetic or environmental context at a massive scale. For microbes, the key phenotype is the growth in population size because it contains information that is directly linked to fitness. Due to technical innovations and extensive automation our capacity to record complex and dynamic microbial growth data is rapidly outpacing our capacity to dissect and visualize this data and extract the fitness components it contains, hampering progress in all fields of microbiology.ResultsTo automate visualization, analysis and exploration of complex and highly resolved microbial growth data as well as standardized extraction of the fitness components it contains, we developed the software PRECOG (PREsentation and Characterization Of Growth-data). PRECOG allows the user to quality control, interact with and evaluate microbial growth data with ease, speed and accuracy, also in cases of non-standard growth dynamics.Quality indices filter high- from low-quality growth experiments, reducing false positives. The pre-processing filters in PRECOG are computationally inexpensive and yet functionally comparable to more complex neural network procedures. We provide examples where data calibration, project design and feature extraction methodologies have a clear impact on the estimated growth traits, emphasising the need for proper standardization in data analysis.ConclusionsPRECOG is a tool that streamlines growth data pre-processing, phenotypic trait extraction, visualization, distribution and the creation of vast and informative phenomics databases.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1134-2) contains supplementary material, which is available to authorized users.
The rapid recent evolution of the field phenomics—the genome-wide study of gene dispensability by quantitative analysis of phenotypes—has resulted in an increasing demand for new data analysis and visualization tools. Following the introduction of a novel approach for precise, genome-wide quantification of gene dispensability in Saccharomyces cerevisiae we here announce a public resource for mining, filtering and visualizing phenotypic data—the PROPHECY database. PROPHECY is designed to allow easy and flexible access to physiologically relevant quantitative data for the growth behaviour of mutant strains in the yeast deletion collection during conditions of environmental challenges. PROPHECY is publicly accessible at http://prophecy.lundberg.gu.se.
Connecting genotype to phenotype is fundamental in biomedical research and in our understanding of disease. Phenomics—the large-scale quantitative phenotypic analysis of genotypes on a genome-wide scale—connects automated data generation with the development of novel tools for phenotype data integration, mining and visualization. Our yeast phenomics database PROPHECY is available at . Via phenotyping of 984 heterozygous diploids for all essential genes the genotypes analysed and presented in PROPHECY have been extended and now include all genes in the yeast genome. Further, phenotypic data from gene overexpression of 574 membrane spanning proteins has recently been included. To facilitate the interpretation of quantitative phenotypic data we have developed a new phenotype display option, the Comparative Growth Curve Display, where growth curve differences for a large number of mutants compared with the wild type are easily revealed. In addition, PROPHECY now offers a more informative and intuitive first-sight display of its phenotypic data via its new summary page. We have also extended the arsenal of data analysis tools to include dynamic visualization of phenotypes along individual chromosomes. PROPHECY is an initiative to enhance the growing field of phenome bioinformatics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.