This paper aims to analyze empirically how manufacturing, disaggregated into subsectors by research and development (R&D) intensity, influences the level of economic complexity (eci). For this, two methods were used: 1) the parametric by Panel Dynamic Ordinary Least Squares (pdols) and 2) the non-parametric: a) Data Envelopment Analysis (dea) and b) Malmquist Decomposition. The econometric results suggest that the allocation of workers in the manufacture of high R&D level has a positive impact on the eci level of all the countries in the sample analyzed, whereas in the sectors of lower R&D there is a greater impact in emerging countries, but lower effects (or negative) on advanced countries. In general, the non-parametric results present the relationship between efficiency in manufacturing subsectors and economic complexity as an inverted U shape. Special attention is given to Brazil, which manufacturing catching up was underperformed in explaining total factor productivity in the analyzed period.
O presente artigo tem como objetivo geral realizar uma análise da indústria automobilística no Brasil contrastando o cenário de produção nacional com o internacional no período recente (até 2010), bem como verificar a influência de algumas variáveis selecionadas sobre a demanda de veículos automotores no mercado interno. Constatou-se que a China e Índia estão moldando os padrões de concorrência internacional no período recente. Além disso, entre um conjunto de variáveis testadas econometricamente, infere-se que a demanda de veículos automotores no mercado interno tem sofrido maior influência dos fatores preço, volume de financiamentos e taxas de juros (operações de crédito com recursos livres referenciais para taxa de juros pré-fixada) no período analisado.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.