The binding of [3H]dihydrostreptomycin to the 70‐S ribosome or to the 30‐S subunit has been investigated in the presence of neomycin by the Millipore filtration or the equilibrium dialysis procedure. It was observed that dihydrostreptomycin binds equally well to the 30‐S subunit and the 70‐S ribosome, and that neomycin stimulates the binding of dihydrostreptomycin to the ribosome by increasing the association constant ant not by creating new binding sites. Specific removal of protein S1 from the 30‐S subunit neither affected the binding of dihydrostreptomycin to the ribosome nor the stimulation fo dihydrostreptomycin binding by neomycin.
Tumors which are induced in chickens by avian sarcoma virus frequently grow progressively for several weeks and then regress. We showed that tumor cells which are derived from the progressively growing phase of tumor growth produce large quantities of progeny-transforming virus, are reactive with antiviral antibody, and are susceptible to lysis in cell-mediated cytotoxicity assays by splenic lymphocytes of sensitized hosts. In contrast, tumor cells derived from regressing sarcomas are poor producers of progeny virus and are relatively unreactive with both antiviral antibody and sensitized lymphocytes. We further found that pp6OSrc kinase activity was reduced by about 75% in regressing compared with progressively growing tumor cells. The half-lives of directly precipitable pp60`in tumor cells derived from progressively growing and regressing neoplasn.s were 6 and 1.5 h, respectively. Studies on each of three other cellular enzymes did not reveal any regressio.li-associated decreases in enzyme activity. These data support the notion that expression of adequate levels of long-lived pp60 kinase activity s essential to progressive tumor growth.
We have identified a protein in the soluble fraction from mouse cardiac tissue extracts which is rapidly and selectively acylated by myristyl CoA. This protein was partially purified by anion-exchange chromatography and gel filtration, and the acylation reaction was measured using [3H]myristyl CoA as substrate, followed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis to resolve [3H]fatty acyl polypeptides. The [3H]acyl protein migrated as heterogeneous bands corresponding to relative masses (MrS) of 42,000-51,000 under nonreducing conditions or as a single polypeptide of Mr 51,000 in the presence of reducing agents. Fatty acyl chain incorporation into protein was very rapid and already maximum after 30 s of incubation, whereas no acylation was detected using heat-denatured samples or when the reaction was stopped immediately after initiation. Only the acyl CoA served as fatty acyl chain donor. No incorporation into protein occurred when myristyl CoA was substituted by myristic acid, ATP, and CoA. A time-dependent reduction in the level of [3H]fatty acyl polypeptide was observed upon addition of excess unlabeled myristyl CoA, indicating the ability of the labeled acyl moiety of the protein to turn over during incubation. The saturated C10:0, C14:0, and C16:0 acyl CoAs were more effective to chase the label from the [3H]acyl polypeptide than the C18:0 and C18:1 acyl CoAs. These results provide evidence for a 51-kilodalton polypeptide which serves as an acceptor for fatty acyl chains and could represent an important intermediate in fatty acyl chain transfer reactions in cardiac tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.