After separating by two-dimensional gel electrophoresis an extract of total proteins from human stratum corneum, two spots were extracted and analyzed for their peptide sequence. The resulting internal protein sequences provided evidence for the identification of a new calcium-binding protein. Cloning of the corresponding full-length cDNA was achieved by reverse transcriptase-polymerase chain reaction using two keratinocyte libraries, one from proliferating cultured keratinocytes and one from differentiated keratinocytes of reconstructed human epidermis. The cDNA had an open reading frame encoding a new calcium-binding protein of 146 amino acids, a member of the calmodulin family. We named this new protein calmodulin-like skin protein (CLSP), since reverse transcriptase-polymerase chain reaction studies of CLSP expression in 10 different human tissues revealed that this protein was particularly abundant in the epidermis where its expression is directly related to keratinocyte differentiation. Expression of the cloned cDNA in Escherichia coli yielded a recombinant protein which allowed its further characterization. rCLSP is able to bind calcium, and similarly to calmodulin, exposes thereafter hydrophobic parts which most likely interact with target proteins. Epidermal proteins retained by CaM affinity column are quantitatively and qualitatively distinct from those of the rCLSP column. Sequencing of a rCLSP affinity purified protein revealed 100% identity with transglutaminase 3, a key enzyme in terminal differentiation, indicating an important role of CLSP in this process.
Desquamation is described as a protease-dependent phenomenon where serine proteases with a basic pH optimum play a key role. Recently proteases with an acidic pH optimum were identified in the stratumcorneum and associated with desquamation, e.g., cathepsin D and the stratum corneum thiol protease. The purpose of this study was to investigate if human stratum corneum contains proteases different from the above, exhibiting similar properties. After gel filtration, we identified four distinct proteolytic activities in a human stratum corneum extract, a cathepsin-E-like activity (80 kDa), a cathepsin-D activity (40 kDa), a yet unknown cathepsin-L-like form (28 kDa) exhibiting the highest caseinolytic activity, and a chymotrypsin-like protein (24 kDa) containing the acidic activity of the well described stratum corneum chymotryptic enzyme. We named the new 28 kDa protease stratum corneum cathepsin-L-like enzyme. Characterization of stratum corneum cathepsin-L-like enzyme provided clear evidence that this new protease, despite its membership to the cathepsin-L-like family, is distinct from cathepsin L and from the recently described stratum corneum thiol protease. Its ability to hydrolyze corneodesmosin, a marker of corneocyte cohesion, was in favor of a role of stratum corneum cathepsin-L-like enzyme in the desquamation process. A more detailed analysis did not allow us to identify stratum corneum cathepsin-L-like enzyme at the molecular level but revealed that stratum corneum thiol protease is identical with the recently described cathepsin L2 protease. Reverse transcription polymerase chain reaction studies and the use of a specific antibody revealed that, in contrast to earlier reports, expression of stratum corneum thiol protease in human epidermis is not related to keratinocyte differentiation. Our results indicate that the stratum corneum thiol protease is probably expressed as a pro-enzyme in the lower layers of the epidermis and in part activated by a yet unidentified mechanism in the upper layers during keratinocyte differentiation.
A protein exhibiting endoglycosidase activity was purified from plantar stratum corneum to apparent homogeneity in two sequential column chromatographic steps. Protein sequencing revealed its identity with the recently cloned human heparanase 1, an enzyme, the expression of which is reported to be related to the metastasic potential of tumor cells. By using a heparanase 1 specific antibody we were able to demonstrate that, in the plantar stratum corneum, heparanase 1 exists in two forms, the active 50 kDa protein and the inactive 63 kDa form, probably a proform of the enzyme. The antibody also decorated numerous degradation fragments. Reverse transcription polymerase chain reaction studies as well as immunohistochemical analysis using reconstructed and normal human epidermis demonstrated clearly a keratinocyte differentiation related expression of heparanase 1. Interestingly, the antibody also strongly decorated dendritic cells, which after double labeling could be identified to be a subpopulation of the epidermal Langerhans cells. Based on our findings and the known history of this enzyme, we advanced the hypothesis that heparanase 1 has multiple physiologic functions in the epidermis: (i) it plays an important role in epidermal differentiation, possibly by modulating the liberation of heparan sulfate bound (growth) factors; (ii) in the stratum corneum, the endoglycosidase activity of heparanase 1 might be indispensable and represent the first step in the desquamation process; and (iii) in Langerhans cells, its catalytic activity is required for the trans-tissue migration of these cells.
The in vitro and in vivo data demonstrate that based on its multiple interactions within human skin, LR2412 has potential to partially correct the signs of ageing in intrinsically and photoaged skin.
Jasmonic acid is involved in plant wound repair and tissue regeneration, but no study has been reported in human skin. The effect of a jasmonic acid derivative, tetra-hydrojasmonic acid (LR2412, 1 and 10 lm) was investigated on an in vitro reconstructed skin model, Episkin TM . Using real time RTQPCR studies, results showed an increase in hyaluronan synthase 2 (HAS2) and hyaluronase synthase 3 (HAS3) expression. Furthermore, an increase in hyaluronic acid (HA) deposits in basal and suprabasal layers of the epidermis was observed. The percentage of positive Ki67 keratinocytes in the basal layer as well as the epidermis thickness were seen to increase. Immunohistochemistry studies showed that the synthesis of late differentiation proteins filaggrin and transglutaminase 1 was not modified. The human epidermis is known to thin with age while HA content has been reported to decrease. These results illustrate the potential of LR2412 in counteracting signs of skin ageing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.