Fine particulate matters less than 2.5 µm (PM2.5) in the ambient atmosphere are strongly associated with adverse health effects. However, it is unlikely that all fine particles are equally toxic in view of their different sizes and chemical components. Toxicity of fine particles produced from various combustion sources (diesel engine, gasoline engine, biomass burning (rice straw and pine stem burning), and coal combustion) and non-combustion sources (road dust including sea spray aerosols, ammonium sulfate, ammonium nitrate, and secondary organic aerosols (SOA)), which are known major sources of PM2.5, was determined. Multiple biological and chemical endpoints were integrated for various source-specific aerosols to derive toxicity scores for particles originating from different sources. The highest toxicity score was obtained for diesel engine exhaust particles, followed by gasoline engine exhaust particles, biomass burning particles, coal combustion particles, and road dust, suggesting that traffic plays the most critical role in enhancing the toxic effects of fine particles. The toxicity ranking of fine particles produced from various sources can be used to better understand the adverse health effects caused by different fine particle types in the ambient atmosphere, and to provide practical management of fine particles beyond what can be achieved only using PM mass which is the current regulation standard.
Abstract. Reactive oxygen species (ROS) carried or induced by particulate matter (PM) are suspected of inducing oxidative stress in vivo, leading to adverse health impacts such as respiratory or cardiovascular diseases. The oxidative potential (OP) of PM, displaying the ability of PM to oxidize the lung environment, is gaining strong interest in examining health risks associated with PM exposure. In this study, OP was measured by two different acellular assays (dithiothreitol, DTT, and ascorbic acid, AA) on PM10 filter samples from 15 yearly time series of filters collected at 14 different locations in France between 2013 and 2018, including urban, traffic and Alpine valley site typologies. A detailed chemical speciation was also performed on the same samples, allowing the source apportionment of PM using positive matrix factorization (PMF) for each series, for a total number of more than 1700 samples. This study then provides a large-scale synthesis of the source apportionment of OP using coupled PMF and multiple linear regression (MLR) models. The primary road traffic, biomass burning, dust, MSA-rich, and primary biogenic sources had distinct positive redox activity towards the OPDTT assay, whereas biomass burning and road traffic sources only display significant activity for the OPAA assay. The daily median source contribution to the total OPDTT highlighted the dominant influence of the primary road traffic source. Both the biomass burning and the road traffic sources contributed evenly to the observed OPAA. Therefore, it appears clear that residential wood burning and road traffic are the two main target sources to be prioritized in order to decrease significantly the OP in western Europe and, if the OP is a good proxy of human health impact, to lower the health risks from PM exposure.
Abstract. A fine-scale source apportionment of PM10 was conducted in three different urban sites (background, hyper-center, and peri-urban) within 15 km of the city in Grenoble, France using Positive Matrix Factorization (PMF 5.0) on measured chemical species from collected filters (24 h) from February 2017 to March 2018. To improve the PMF solution, several new organic tracers (3-MBTCA, pinic acid, phthalic acid, MSA, and cellulose) were additionally used in order to identify sources that are commonly unresolved by classic PMF methodologies. An 11-factor solution was obtained in all sites, including commonly identified sources from primary traffic (13 %), nitrate-rich (17 %), sulfate-rich (17 %), industrial (1 %), biomass burning (22 %), aged sea salt (4 %), sea/road salt (3 %), and mineral dust (7 %), and the newly found sources from primary biogenic (4 %), secondary biogenic oxidation (10 %), and MSA-rich (3 %). Generally, the chemical species exhibiting similar temporal trends and strong correlations showed uniformly distributed emission sources in the Grenoble basin. The improved PMF model was able to obtain and differentiate chemical profiles of specific sources even at high proximity of receptor locations, confirming its applicability in a fine-scale resolution. In order to test the similarities between the PMF-resolved sources, the Pearson distance and standardized identity distance (PD-SID) of the factors in each site were compared. The PD-SID metric determined whether a given source is homogeneous (i.e., with similar chemical profiles) or heterogeneous over the three sites, thereby allowing better discrimination of localized characteristics of specific sources. Overall, the addition of the new tracers allowed the identification of substantial sources (especially in the SOA fraction) that would not have been identified or possibly mixed with other factors, resulting in an enhanced resolution and sound source profile of urban air quality at a city scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.