Exocellular protease production was examined in two separate strains of Pseudomonas aeruginosa, one a clinical isolate and the other a laboratory strain. Both strains produced two separate proteases (proteases 1 and 2) which were indistinguishable from one strain to the other. The two proteases were purified by a two-step procedure of gel filtration chromatography followed by ion-exchange chromatography. Proteases 1 and 2 were shown to be distinct serologically and unrelated by physiochemical parameters examined. Protease 1 was the major exocellular protein produced and contributed about 95% of the total protease activity of the culture. It was etimated to have a molecular weight of 34850 and was also shown to contain 10% glucosamine by weight. Protease 2, in contrast, had an estimated molecular weight of 52750 and contained no detectable carbohydrate. Proteases 1 and 2 were both stimulated by Ca2+, and Mg2+ and inhibited by Co2+Zn2+, and 1,10-o-phenanthroline. Protease 1 was also inhibited by EDTA. In addition to protease activity, both proteases 1 and 2 demonstrated elastase activity as well as a limited collagenase activity. Specificity of the two protease against synthetic peptides was, however, quite different. Protease 1, but not protease 2, showed a preference for peptide bonds in which the amino group was contributed by an amino acid with a hydrophovic R group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.