RESUMO: "Uma revisão de plantas com propriedades anticonvulsivantes". Cerca de um terço dos pacientes epilépticos não conseguem ter um tratamento adequado com as drogas anticonvulsivantes atuais. Nesse sentido, as plantas medicinais surgem como uma fonte promissora de novas moléculas químicas com propriedades biológicas apreciáveis. Muitas plantas ou produtos de origem naturais têm sido propostos para o tratamento de várias patologias, tais como: epilepsia, diabetes, ansiedade, depressão, dentre outras. O presente trabalho realizou um extenso levantamento na literatura especializada de plantas medicinais com propriedades anticonvulsivantes. Um total de 355 espécies vegetais foi identifi cado, sendo 16 plantas encontradas na fl ora brasileira, com indicação para o tratamento de quadros convulsivos. Características como nome da espécie, família, partes utilizadas, país do estudo e /ou publicação, métodos e referências foram sumarizados. Além disso, os principais apectos dos modelos animais mais utilizados no estudo de plantas/substâncias com propriedades anticonvulsivantes foram revisados. Mais de 170 referências foram consultadas.Unitermos: Plantas medicinais, Produtos naturais, convulsão, atividade anticonvulsivante, modelos animais, revisão. ABSTRACT:Seizures are resistant to treatment with currently available anticonvulsant drugs in about 1 out of 3 patients with epilepsy. Thus, there is a need for new, more effective anticonvulsant drugs for intractable epilepsy. However, nature is a rich source of biological and chemical diversity and a number of plants in the world have been used in traditional medicine remedies, i.e., anticonvulsant, anxiolytic, analgesic, antidepressant. This work constitutes a literature review on medicinal plants showing anticonvulsant properties. The review refers to 16 Brazilian plants and a total 355 species, their families, geographical distribution, the utilized parts, method and references. Some aspects of research on medicinal plants and a brief review of the most common animal models to discover antiepileptic drugs are discussed. For this purpose over 170 references were consulted.
Background: Asthma, the main inflammatory chronic condition affecting the respiratory system, is characterized by hyperresponsiveness and reversible airway obstruction, recruitment of inflammatory cells and excessive production of mucus. Cytokines as biochemical messengers of immune cells, play an important role in the regulation of allergic inflammatory and infectious airway processes. Essential oils of plant origin are complex mixtures of volatile and semi volatile organic compounds that determine the specific aroma of plants and are categorized by their biological activities.Purpose: We reviewed whether essential oils and their bioactive compounds of plant origin could modulate cytokines' immune responses and improve asthma therapy in experimental systems in vitro and in vivo.Methods: Electronic and manual search of articles in English available from inception up to November 2018 reporting the immunomodulatory activity of essential oils and their bioactive compounds for the management of asthma. We used PubMed, EMBASE, Scopus and Web of Science. Publications reporting preclinical experiments where cytokines were examined to evaluate the consequence of anti-asthmatic therapy were included.Results: 914 publications were identified and 13 were included in the systematic review.Four articles described the role of essential oils and their bioactive compounds on bronchial asthma using cell lines; nine in vivo studies evaluated the anti-inflammatory efficacy and immunomodulating effects of essential oil and their secondary metabolites on cytokines production and inflammatory responses. The most important immunopharmacological mechanisms reported were the regulation of cytokine
Background SARS-CoV-2 infection can lead to the abnormal induction of cytokines and a dysregulated hyperinflammatory state that is implicated in disease severity and risk of death. There are several molecules present in blood associated with immune cellular response, inflammation, and oxidative stress that could be used as severity markers in respiratory viral infections such as COVID-19. However, there is a lack of clinical studies evaluating the role of oxidative stress-related molecules including glial fibrillary acidic protein (GFAP), the receptor for advanced glycation end products (RAGE), high mobility group box-1 protein (HMGB1) and cyclo-oxygenase-2 (COX-2) in COVID-19 pathogenesis. Aim To evaluate the role of oxidative stress-related molecules in COVID-19. Method An observational study with 93 Brazilian participants from September 2020 to April 2021, comprising 23 patients with COVID-19 admitted to intensive care unit (ICU), 19 outpatients with COVID-19 with mild to moderate symptoms, 17 individuals reporting a COVID-19 history, and 34 healthy controls. Blood samples were taken from all participants and western blot assay was used to determine the RAGE, HMGB1, GFAP, and COX-2 immunocontent. Results We found that GFAP levels were higher in patients with severe or critical COVID-19 compared to outpatients (p = 0.030) and controls (p < 0.001). A significant increase in immunocontents of RAGE (p < 0.001) and HMGB1 (p < 0.001) were also found among patients admitted to the ICU compared to healthy controls, as well as an overexpression of the inducible COX-2 (p < 0.001). In addition, we found a moderate to strong correlation between RAGE, GFAP and HMGB1 proteins. Conclusion SARS-CoV-2 infection induces the upregulation of GFAP, RAGE, HMGB1, and COX-2 in patients with the most severe forms of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.