Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.
Modular polyketide synthases and nonribosomal peptide synthetases are molecular assembly lines consisting of several multienzyme subunits that undergo dynamic self-assembly to form a functional mega-complex. N-and C-terminal docking domains are usually responsible for Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Mapping the interaction sites between membrane-spanning proteins is a key challenge in structural biology. In this study a carbene-footprinting approach was developed and applied to identify the interfacial sites of a trimeric, integral membrane protein, OmpF, solubilised in micelles. The diazirine-based footprinting probe is effectively sequestered by, and incorporated into, the micelles, thus leading to efficient labelling of the membrane-spanning regions of the protein upon irradiation at 349 nm. Areas associated with protein-protein interactions between the trimer subunits remained unlabelled, thus revealing their location.
Modular polyketide synthases (PKSs) produce numerous structurally complex natural products that have diverse applications in medicine and agriculture. PKSs typically consist of several multienzyme subunits that utilize structurally defined docking domains (DDs) at their N and C termini to ensure correct assembly into functional multiprotein complexes. Here we report a fundamentally different mechanism for subunit assembly in trans-acyltransferase (trans-AT) modular PKSs at the junction between ketosynthase (KS) and dehydratase (DH) domains. This mechanism involves direct interaction of a largely unstructured docking domain (DD) at the C terminus of the KS with the surface of the downstream DH. Acyl transfer assays and mechanism-based crosslinking established that the DD is required for the KS to communicate with the acyl carrier protein appended to the DH. Two distinct regions for binding of the DD to the DH were identified using NMR spectroscopy, carbene footprinting, and mutagenesis, providing a foundation for future elucidation of the molecular basis for interaction specificity.
Mapping the interaction sites between membrane‐spanning proteins is a key challenge in structural biology. In this study a carbene‐footprinting approach was developed and applied to identify the interfacial sites of a trimeric, integral membrane protein, OmpF, solubilised in micelles. The diazirine‐based footprinting probe is effectively sequestered by, and incorporated into, the micelles, thus leading to efficient labelling of the membrane‐spanning regions of the protein upon irradiation at 349 nm. Areas associated with protein–protein interactions between the trimer subunits remained unlabelled, thus revealing their location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.