Purpose Carotid atherosclerosis is a kind of systemic atherosclerosis in the carotid arteries. However, the efficiency of treatment is insufficient. Therefore, it is urgent to find therapeutic targets and deepen the understanding of carotid atherosclerosis. Materials and Methods In this study, we analyzed differentially expressed genes (DEGs) between atheroma plaque and macroscopically intact tissue (control samples). Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analysis based on the DEGs. Four methods were used to identify the hub genes in the protein–protein interaction networks of the DEGs. Furthermore, we also performed network module analysis to reveal carotid atherosclerosis-related gene modules and biological functions. Results The enrichment results showed that the biological functions were related to inflammation, immunity, chemokine and cell adhesion molecule, such as PIK-Akt signaling pathway, Rap1 signaling pathway, MAPK signaling pathway, NOD-like receptor signaling pathway and B cell receptor signaling pathway. In addition, we screened the hub genes. A total of 16 up-regulated genes (C3AR1, CCR1, CCR2, CD33, CD53, CXCL10, CXCL8, CXCR4, CYBB, FCER1G, FPR2, ITGAL, ITGAM, ITGAX, ITGB2, and LILRB2) were identified as hub genes. A total of 5 gene modules were obtained. We found that biological functions obtained for each cluster were mostly related to immunity, chemokines and cell adhesion molecules. Conclusion The present study identified key DEGs in atheroma plaque compared with control samples. The key genes involved in the development of carotid atherosclerosis may provide valuable therapeutic targets for carotid atherosclerosis.
Alzheimer’s disease (AD) is a common neurodegenerative disease. Its onset is insidious and its progression is slow, making diagnosis difficult. In addition, its underlying molecular and cellular mechanisms remain unclear. In this study, clustering analysis was performed on single-cell RNA sequencing (scRNA-seq) data from the prefrontal cortex of 48 AD patients. Each sample module was identified to be a specific AD cell type, eight main brain cell types were identified, and the dysfunctional evolution of each cell type was further explored by pseudo-time analysis. Correlation analysis was then used to explore the relationship between AD cell types and pathological characteristics. In particular, intercellular communication between neurons and glial cells in AD patients was investigated by cell communication analysis. In patients, neuronal cells and glial cells significantly correlated with pathological features, and glial cells appear to play a key role in the development of AD through ligand-receptor axis communication. Marker genes involved in communication between these two cell types were identified using five types of modeling: logistic regression, multivariate logistic regression, least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM). LASSO modeling identified CXCR4, EGFR, MAP4K4, and IGF1R as key genes in this communication. Our results support the idea that microglia play a role in the occurrence and development of AD through ligand-receptor axis communication. In particular, our analyses identify CXCR4, EGFR, MAP4K4, and IGF1R as potential biomarkers and therapeutic targets in AD.
The incidence of Alzheimer’s disease (AD) is constantly increasing as the older population grows, and no effective treatment is currently available. In this study, we focused on the identification of AD molecular subtypes to facilitate the development of effective drugs. AD sequencing data collected from the Gene Expression Omnibus (GEO) database were subjected to cluster sample analysis. Each sample module was then identified as a specific AD molecular subtype, and the biological processes and pathways were verified. The main long non-coding RNAs and transcription factors regulating each “typing pathway” and their potential mechanisms were determined using the RNAInter and TRRUST databases. Based on the marker genes of each “typing module,” a classifier was developed for molecular typing of AD. According to the pathways involved, five sample clustering modules were identified (mitogen-activated protein kinase, synaptic, autophagy, forkhead box class O, and cell senescence), which may be regulated through multiple pathways. The classifier showed good classification performance, which may be useful for developing novel AD drugs and predicting their indications.
BackgroundAlzheimer’s disease (AD) and sleep disorders are both neurodegenerative conditions characterized by impaired or absent sleep. However, potential common pathogenetic mechanisms of these diseases are not well characterized.MethodsDifferentially expressed genes (DEGs) were identified using publicly available human gene expression profiles GSE5281 for AD and GSE40562 for sleep disorder. DEGs common to the two datasets were used for enrichment analysis, and we performed multi-scale embedded gene co-expression network analysis (MEGENA) for common DEGs. Fast gene set enrichment analysis (fGSEA) was used to obtain common pathways, while gene set variation analysis (GSVA) was applied to quantify those pathways. Subsequently, we extracted the common genes between module genes identified by MEGENA and genes of the common pathways, and we constructed protein-protein interaction (PPI) networks. The top 10 genes with the highest degree of connectivity were classified as hub genes. Common genes were used to perform Metascape enrichment analysis for functional enrichment. Furthermore, we quantified infiltrating immune cells in patients with AD or sleep disorder and in controls.ResultsDEGs common to the two disorders were involved in the citrate cycle and the HIF-1 signaling pathway, and several common DEGs were related to signaling pathways regulating the pluripotency of stem cells, as well as 10 other pathways. Using MEGENA, we identified 29 modules and 1,498 module genes in GSE5281, and 55 modules and 1,791 module genes in GSE40562. Hub genes involved in AD and sleep disorder were ATP5A1, ATP5B, COX5A, GAPDH, NDUFA9, NDUFS3, NDUFV2, SOD1, UQCRC1, and UQCRC2. Plasmacytoid dendritic cells and T helper 17 cells had the most extensive infiltration in both AD and sleep disorder.ConclusionAD pathology and pathways of neurodegeneration participate in processes contributing in AD and sleep disorder. Hub genes may be worth exploring as potential candidates for targeted therapy of AD and sleep disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.