The coronavirus disease 2019 (COVID-19) pandemic has swept over the world in the past months, causing significant loss of life and consequences to human health. Although numerous drug and vaccine development efforts are underway, there are many outstanding questions on the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral association to angiotensin-converting enzyme 2 (ACE2), its main host receptor, and host cell entry. Structural and biophysical studies indicate some degree of flexibility in the viral extracellular spike glycoprotein and at the receptor-binding domain (RBD)-receptor interface, suggesting a role in infection. Here, we perform explicitly solvated, all-atom, molecular dynamics simulations of the glycosylated, full-length, membrane-bound ACE2 receptor in both an apo and spike RBD-bound state to probe the intrinsic dynamics of the ACE2 receptor in the context of the cell surface. A large degree of fluctuation in the full-length structure is observed, indicating hinge bending motions at the linker region connecting the head to the transmembrane helix while still not disrupting the ACE2 homodimer or ACE2-RBD interfaces. This flexibility translates into an ensemble of ACE2 homodimer conformations that could sterically accommodate binding of the spike trimer to more than one ACE2 homodimer and suggests a mechanical contribution of the host receptor toward the large spike conformational changes required for cell fusion. This work presents further structural and functional insights into the role of ACE2 in viral infection that can potentially be exploited for the rational design of effective SARS-CoV-2 therapeutics.
The SARS-CoV-2 coronavirus is an enveloped, positive-sense single-stranded RNA virus that is responsible for the COVID-19 pandemic. The spike is a class I viral fusion glycoprotein that extends from the viral surface and is responsible for viral entry into the host cell and is the primary target of neutralizing antibodies. The receptor binding domain (RBD) of the spike samples multiple conformations in a compromise between evading immune recognition and searching for the host-cell surface receptor. Using atomistic simulations of the glycosylated wild-type spike in the closed and 1-up RBD conformations, we map the free energy landscape for RBD opening and identify interactions in an allosteric pocket that influence RBD dynamics. The results provide an explanation for experimental observation of increased antibody binding for a clinical variant with a substitution in this pocket. Our results also suggest the possibility of allosteric targeting of the RBD equilibrium to favor open states via binding of small molecules to the hinge pocket. In addition to potential value as experimental probes to quantify RBD conformational heterogeneity, small molecules that modulate the RBD equilibrium could help explore the relationship between RBD opening and S1 shedding.
The COVID-19 pandemic has swept over the world in the past months, causing significant loss of life and consequences to human health. Although numerous drug and vaccine developments efforts are underway, many questions remain outstanding on the mechanism of SARS-CoV-2 viral association to angiotensin-converting enzyme 2 (ACE2), its main host receptor, and entry in the cell. Structural and biophysical studies indicate some degree of flexibility in the viral extracellular Spike glycoprotein and at the receptor binding domain-receptor interface, suggesting a role in infection. Here, we perform all-atom molecular dynamics simulations of the glycosylated, full-length membrane-bound ACE2 receptor, in both an apo and spike receptor binding domain (RBD) bound state, in order to probe the intrinsic dynamics of the ACE2 receptor in the context of the cell surface. A large degree of fluctuation in the full length structure is observed, indicating hinge bending motions at the linker region connecting the head to the transmembrane helix, while still not disrupting the ACE2 homodimer or ACE2-RBD interfaces. This flexibility translates into an ensemble of ACE2 homodimer conformations that could sterically accommodate binding of the spike trimer to more than one ACE2 homodimer, and suggests a mechanical contribution of the host receptor towards the large spike conformational changes required for cell fusion. This work presents further structural and functional insights into the role of ACE2 in viral infection that can be exploited for the rational design of effective SARS-CoV-2 therapeutics.Statement of SignificanceAs the host receptor of SARS-CoV-2, ACE2 has been the subject of extensive structural and antibody design efforts in aims to curtail COVID-19 spread. Here, we perform molecular dynamics simulations of the homodimer ACE2 full-length structure to study the dynamics of this protein in the context of the cellular membrane. The simulations evidence exceptional plasticity in the protein structure due to flexible hinge motions in the head-transmembrane domain linker region and helix mobility in the membrane, resulting in a varied ensemble of conformations distinct from the experimental structures. Our findings suggest a dynamical contribution of ACE2 to the spike glycoprotein shedding required for infection, and contribute to the question of stoichiometry of the Spike-ACE2 complex.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) an enveloped, positive-sense single-stranded RNA virus that is responsible for the COVID-19 pandemic. The viral spike is a class I viral fusion glycoprotein that extends from the viral surface and is responsible for viral entry into the host cell, and is the primary target of neutralizing antibodies. However, antibody recognition often involves variable surface epitopes on the spike, and the receptor binding domain (RBD) of the spike hides from immune recognition underneath a glycan shield aside from brief dynamic excursions to search for the host-cell surface receptor ACE2. Using an atomistic model of the glycosylated wild-type spike in the closed and 1-up RBD conformations, we identified specific interactions that stabilize the closed RBD, and mapped the free energy landscape for RBD opening. We characterized a transient pocket associated with a hinge motion during opening of the RBD, suggesting the possibility of allosteric control of the RBD via this region. Substitution of a conserved alanine to bulkier leucine in the pocket shifted the RBD equilibrium to favor the open, exposed state, as did removal of a conserved lysine that forms a critical salt-bridge in the closed, hidden state. Results from our virtual screening, MD simulations and free energy landscape calculations for wild-type spike suggest that small molecules can spontaneously bind to the highly conserved hinge pocket, and that such binding can shift the RBD equilibrium to favor the open state. Stabilizing the open state may facilitate antibody recognition by forcing the spike to expose critical RBD epitopes, and also could increase the likelihood of premature triggering of the spike fusion machinery via S1 shedding, neutralizing the infectious ability of the virus.
SARS-CoV-2, the causative agent of the COVID-19 pandemic, is an enveloped RNA virus. Trimeric spike glycoproteins extend outward from the virion; these class I viral membrane fusion proteins mediate entry of the virus into a host cell and are the dominant antigen for immune response. Cryo-EM studies have generated a large number of structures for the spike either alone, or bound to the cognate receptor ACE2 or antibodies, with the three receptor binding domains (RBDs) seen closed, open, or in various combinations. Binding to ACE2 requires an open RBD, and is believed to trigger the series of dramatic conformational changes in the spike that lead to the shedding of the S1 subunit and transition of the spring-loaded S2 subunit to the experimentally observed post-fusion structure. The steps following ACE2 binding are poorly understood despite extensive characterization of the spike through X-ray, cryo-EM, and computation. Here, we use all-atom simulations, guided by analysis of 81 existing experimental structures, to develop a model for the structural and energetic coupling that connects receptor binding to activation of the membrane fusion machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.