The sensitivity of key hydrologic variables and hydropower generation to climate change in the Lake Malawi and Shire River basins is assessed. The study adapts the mesoscale Hydrological Model (mHM) which is applied separately in the Upper Lake Malawi and Shire River basins. A particular Lake Malawi model, which focuses on reservoir routing and lake water balance, has been developed and is interlinked between the two basins. Climate change projections from 20 Coordinated Regional Climate Downscaling Experiment (CORDEX) models for Africa based on two scenarios (RCP4.5 and RCP8.5) for the periods 2021–2050 and 2071–2100 are used. An annual temperature increase of 1 °C decreases mean lake level and outflow by 0.3 m and 17%, respectively, signifying the importance of intensified evaporation for Lake Malawi’s water budget. Meanwhile, a +5% (−5%) deviation in annual rainfall changes mean lake level by +0.7 m (−0.6 m). The combined effects of temperature increase and rainfall decrease result in significantly lower flows in the Shire River. The hydrological river regime may change from perennial to seasonal with the combination of annual temperature increase and precipitation decrease beyond 1.5 °C (3.5 °C) and −20% (−15%). The study further projects a reduction in annual hydropower production between 1% (RCP8.5) and 2.5% (RCP4.5) during 2021–2050 and between 5% (RCP4.5) and 24% (RCP8.5) during 2071–2100. The results show that it is of great importance that a further development of hydro energy on the Shire River should take into account the effects of climate change, e.g., longer low flow periods and/or higher discharge fluctuations, and thus uncertainty in the amount of electricity produced.
Abstract. We assess the probabilistic seasonal precipitation forecasts issued by Regional Climate Outlook Forum (RCOF) for the area of two southern African countries, Malawi and Zambia from 2002 to 2013. The forecasts, issued in August, are of rainy season rainfall accumulations in three categories (above normal, normal, and below normal), for early season (October-December) and late season (January-March). As observations we used in-situ observations and interpolated precipitation products from Global Precipitation Climatology Project (GPCP), Global Precipitation Climatology Centre (GPCC), and Climate Prediction Centre (CPC) Merged Analysis of Precipitation (CMAP). Differences between results from different data products are smaller than confidence intervals calculated by bootstrap.We focus on below normal forecasts as they were deemed to be the most important for society. The well-known decomposition of Brier score into three terms (Reliability, Resolution, and Uncertainty) shows that the forecasts are rather reliable or well-calibrated, but have a very low resolution; that is, they are not able to discriminate different events. The forecasts also lack sharpness as forecasts for one category are rarely higher than 40 % or less than 25 %. However, these results might be unnecessarily pessimistic, because seasonal forecasts have gone through much development during the period when the forecasts verified in this paper were issued, and forecasts using current methodology might have performed better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.