The burden of neoplastic diseases is a significant global health challenge accounting for thousands of deaths. In Uganda, about 32,617 cancer cases were reported in 2018, accompanied by 21,829 deaths. In a view to identify some potential anticancer plant candidates for possible drug development, the current study was designed to compile the inventory of plants with reported anticancer activity used in rural Uganda and the evidences supporting their use in cancer therapy. An electronic survey in multidisciplinary databases revealed that 29 plant species belonging to 28 genera distributed among 24 families have been reported to be used in the management of cancer in Uganda. Anticancer plants were majorly from the families Bignoniaceae (7%), Caricaceae (7%), Fabaceae (7%), Moraceae (7%), and Rutaceae (7%). Most species occur in the wild (52%), though some are cultivated (48%). The growth habit of the plants is as trees (55%) or herbs (45%). Anticancer extracts are usually prepared from leaves (29%), bark (24%), roots (21%), and fruits (13%) through decoctions (53%), as food spices (23%) or pounded to produce ointments that are applied topically (10%). Prunus africana (Hook.f.) Kalkman, Opuntia species, Albizia coriaria (Welw. ex Oliver), Daucus carota L., Cyperus alatus (Nees) F. Muell., Markhamia lutea (Benth.) K. Schum., and Oxalis corniculata L. were the most frequently encountered species. As per global reports, Allium sativum L., Annona muricata L., Carica papaya L., Moringa oleifera Lam., Opuntia species, Prunus africana (Hook.f.) Kalkman, and Catharanthus roseus (L.) G. Don. are the most studied species, with the latter having vincristine and vinblastine anticancer drugs developed from it. Prostate, cervical, breast, and skin cancers are the top traditionally treated malignancies. There is a need to isolate and evaluate the anticancer potential of the bioactive compounds in the unstudied claimed plants, such as Cyperus alatus (Nees) F. Muell., Ficus dawei Hutch., Ficus natalensis Hochst., and Lovoa trichilioides Harms, and elucidate their mechanism of anticancer activity.
Objective: To determine the quality of water, heavy metal content of edible muscles of a piscivorous fish (Protopterus annectens) and assess the health risks associated with using water and consumption of P. annectens from Nyabarongo and Nyabugogo rivers of Rwanda. Results: All the water quality parameters were within World Health Organization's acceptable limits except total nitrogen, iron, manganese and lead levels. Edible muscles of Protopterus annectens contained 272.8 ± 0.36, 292.2 ± 0.25, 8.8 ± 0.36, 135.2 ± 0.15, 148.0 ± 0.21 and 432. 0 ± 0.50 mg/kg of iron, manganese, copper, zinc, chromium and lead at Ruliba station and 336.0 ± 0.70, 302.6 ± 1.22, 6.4 ± 0.26, 44.7 ± 0.20, 138.2 ± 0.17 and 302.4 ± 1.50 mg/kg of iron, manganese, copper, zinc, chromium and lead at Kirinda bridge of Nyabarongo river. Health risk assessments indicated that though ingestion and dermal contact with heavy metals in water from the rivers may not cause obvious health effects, consumption of Protopterus annectens from Nyabarongo river may lead to deleterious health effects.
Water is an indispensable natural resource that is often prodigiously threatened by anthropomorphic activities. This study evaluated the physicochemical properties of water and selected heavy metals in edible muscles of a piscivorous fish (Protopterus annectens) from Nyabarongo and Nyabugogo rivers of Rwanda. Edibility health risk was evaluated using the target hazard quotient method. Water samples were taken in triplicate from Ruliba station and Kirinda bridge on Nyabarongo river and Giticyinyoni on Nyabugogo river. Fish samples were obtained from the sampling stations on Nyabarongo river. All samples were analyzed following standard methods and analytical results indicated that the average temperature, pH, total dissolved solids and electrolytic conductivity of water from the rivers were within WHO acceptable limits. The statistical mean concentrations of the ionic components of the water samples were 1.61 ± 0.03, 0.53 ± 0.002, 0.24 ± 0.02 and 0.051 ± 0.01 mg/L for Fe, Mn, Cu and Pb respectively at Ruliba station and 0.63 ± 0.02, 0.02 ± 0.002, 0.09 ± 0.01, 0.06 ± 0.002 and 0.75 ± 0.02 mg/L for Fe, Mn, Zn, Cr and Pb respectively at Kirinda bridge. Water from Giticyinyoni had 1.57 ± 0.02, 0.49 ± 0.03, 0.29 ± 0.058, 0.43 ± 0.058, 0.15 ± 0.00 and 0.59 ± 0.058 mg/L of Fe, Mn, Cu, Zn, Cr and Pb respectively. Zinc, Cu, Cr and Cd were below detection limits in samples from Ruliba station and Kirinda bridge (Nyabarongo river). Edible muscles of P. annectens from Nyabarongo river contained 272.8 ± 0.36, 292.2 ± 0.25, 8.8 ± 0.36, 135.2 ± 0.15, 148.0 ± 0.21 and 432. 0 ± 0.50 mgkg-1 for Fe, Mn, Cu, Zn, Cr and Pb at Ruliba station and 336.0 ± 0.70, 302.6 ± 1.22, 6.4 ± 0.26, 44.7 ± 0.20, 138.2 ± 0.17 and 302.4 ± 1.50 mgkg-1 for Fe, Mn, Cu, Zn, Cr and Pb respectively at Kirinda bridge. Health risk assessment indicated that consumption of the edible muscles of P. annectens may lead to deleterious health effects as reflected by values of target hazard quotients being greater than one. Therefore, the Rwandese government should lay strategies to reduce pollution of the rivers. Further research should evaluate the heavy metal content of metabolically active organs of P. annectens from Nyabarongo river as well as the microbiological profile of water from the rivers.
Aims: To determine the phytochemical composition and antibacterial activity of Solanum incanum fruits against Ralstonia solanacearum. Study Design: Experimental design involving completely randomized design Place and Duration of Study: The study was conducted at department of Chemistry and Biochemistry, School of Sciences and Aerospace studies, Moi University, Kenya, between January and June 2021. Methodology: Extraction was done by maceration using ethanol as the extracting solvent. Phytochemical screening was done following standard procedures. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) were determined using the Folin–Ciocalteu colorimetric method and aluminum chloride colorimetric assay respectively. The extract was further analyzed using Gas Chromatography Mass spectroscopy (GC-MS) and Fourier transformed Infrared (FT-IR). In vitro antibacterial activity was determined using disc diffusion method while in vivo studies was done under greenhouse conditions. Results: Phytochemical analysis showed presence of alkaloids, glycosides, steroids, tannins, flavonoids, phenols, saponins and terpenoids. The TPC and TFC were found to be 84.997 ± 0.2 mg GAE/g and 20.535 ± 0.2 mg/g QE of dried sample respectively. GC-MS analysis revealed the presence of 15 compounds, (9E)-1-Methoxy-9-Octadecene (26.85%), 9-Octadecenamide (Z) (21.43%), E-15-Heptadecenal (7.28%), E-14-Hexadecenal (6.28%), 2,4-Di-tert-butylphenol (4.96%) among others. FT-IR analysis revealed presence of OH, C-H, N-H, CO functional groups at wavenumbers 3348 cm-1, 2931 cm-1, 1589 cm-1, and 1218 cm-1 respectively. The antibacterial activity for in vitro studies at concentrations 0.01, 0.05, 0.10, and 0.15 g/10 mL, the diameters of zone of inhibition were 20.75 ± 1.3, 25.75 ± 0.5, 27.25 ± 0.5, and 30.75 ± 0.5 mm respectively. This was comparable (P= .02) to that of ampicillin (positive control) which had zones of inhibition of 26.75 ± 0.5, 28.75 ± 0.5, 31.75 ± 0.4, and 35.00 ± 0.0 mm at the concentrations respectively. For the in vivo studies the plant extract and ampicillin delayed the development of the disease by eight and ten days post-inoculation respectively while symptoms of bacterial wilt for water treatment (negative control) were observed four days post-inoculation. Conclusion: The plant extract had remarkable antibacterial activity and can be used to make viable formulations to control the devastating bacterial wilt disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.