The aim of our study was to compare serum concentration of leptin and pituitary-thyroid axis hormones in obese/overweight women before and after two levels of energy deficit with those parameters in lean women on adequate energy intake. Additionally, we attempted to elucidate if the effect of weight reduction could be related to anthropometric and hormonal parameters before treatment. Anthropometric and hormonal parameters-serum leptin, TSH, T4, fT4, T3 and leptin to fat mass (Lep/fm), T3/T4, fT4/T4, T4/TSH, fT4/TSH--were compared in two groups of women (n =18 each)--lean women (C: BMI 22.0 +/- 1.2) and overweight/obese (Ov/Ob: BMI 29.9 +/- 3.3). Ov/Ob women were subjected to weight-reducing treatment consisting of energy intake equal to 80% of calculated total energy expenditure for the first 4 wk and to 50% for subsequent 4 wk. All baseline hormone concentrations, Lep/fm, and fT4/T4 were higher in overweight/obese group. After 20% energy deficit decrease in BMI, percent body fat (fm%), leptin, T3, and TSH serum concentrations as well as in Lep/fm and T3/T4 was observed; T4/TSH increased, fT4, fT4/T4 and fT4/TSH did not change significantly. Increase in energy deficit from 20% to 50% resulted in normalization of Lep/fm, on the other hand, it provoked greater decline in thyroid hormone plasma concentration, which could hinder further mass reduction. Leptin and TSH levels were positively correlated after 50% energy deficit treatment. Changes in fm% were directly related to baseline T4/TSH, fT4/TSH, and log TSH. In conclusion, TSH serum concentration and its ratio to T4 and fT4 before weight reduction could be a good predictor of successful weight loss.
This study aimed at assessment of the long-term (4 weeks) metabolic effect of a diet with and without beetroot juice supplementation in fencers using the untargeted metabolomics method with the UPLC Q-TOF/MS system to carry out an analysis of urine samples. Ten women and 10 men underwent the cardiovascular fitness VO2max test at baseline—(B) and after two stages of implementation of the dietary recommendations—the first 4 weeks without beetroot juice (D) and the second with 26 g/d of freeze-dried beetroot juice supplementation (D&J). The urine samples were collected one hour after the VO2max test at B and after D and D&J. The meal before the VO2max test after D&J contained beetroot juice, whereas to the meal at B and after D maltodextrin was added. Changes in metabolites and VO2max were significant only for comparison of D versus D&J. During D and D&J, there were no significant changes in the physical activity level, body mass, and body composition. We observed significant changes in tyrosine and tryptophan metabolism, mainly associated with such neurotransmitter’s metabolism as: Serotonin, noradrenaline, and adrenaline. Changes in signal intensity of bile acid, AICAR, and 4-Hydroxynonenal (peroxidation of polyunsaturated fatty acids product) were also observed. The obtained results indicate that long-term beetroot juice supplementation induces considerable changes in metabolism.
The paper’s objective was to estimate weekly Hg intake from fish meals based on intervention research. Total Hg (THg) concentrations in blood and hair samples collected from men (n = 67) from an intervention study as well as muscular tissues of fresh and after heat-treating fish were determined using the thermal decomposition amalgamation atomic absorption spectrometry method (TDA-AAS) using direct mercury analyzer (DMA-80). The mean of the estimated weekly intake (EWI) was estimated at 0.62 μg/kg bw/week in the range 0.36–0.96 μg/kg body weight (bw) /week through the consumption of 4 edible marine fish species every day (for 10 days) by the participants from the intervention research in Lodz, Poland. The Hg intake in the volunteers in our intervention study accounted for 38.6% of the provisional tolerable weekly intake (PTWI) (1.6 μg/kg bw, weekly) value. The average Hg concentration in the analyzed fish ranged from 0.018 ± 0.006 mg/kg wet weight (Gadus chalcogrammus) to 0.105 ± 0.015 mg/kg wet weight (Macruronus magellanicus). The results for the average consumers were within PTWI of methylmercury (MeHg). Moreover, the average concentration of Hg in the selected fish after heat treatment did not exceed the maximum permitted concentrations for MeHg (MPCs = 0.5 mg/kg wet weight) in food set by the European Commission Regulation (EC/1881/2006). Hence, the risk of adverse effects of MeHg for the participants is substantially low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.