In a biomechanical assessment with simulation of vaginal delivery, exact placement of fingertips on the perineal skin, together with their co-ordinated movement, plays an important role in the extent of reduction of perineal tension.
Introduction and hypothesisDuring vaginal delivery, the levator ani muscle (LAM) undergoes severe deformation. This stress can lead to stretch-related LAM injuries. The objective of this study was to develop a sophisticated MRI-based model to simulate changes in the LAM during vaginal delivery.MethodsA 3D finite element model of the female pelvic floor and fetal head was developed. The model geometry was based on MRI data from a nulliparous woman and 1-day-old neonate. Material parameters were estimated using uniaxial test data from the literature and by least-square minimization method. The boundary conditions reflected all anatomical constraints and supports. A simulation of vaginal delivery with regard to the cardinal movements of labor was then performed.ResultsThe mean stress values in the iliococcygeus portion of the LAM during fetal head extension were 4.91–7.93 MPa. The highest stress values were induced in the pubovisceral and puborectal LAM portions (mean 27.46 MPa) at the outset of fetal head extension. The last LAM subdivision engaged in the changes in stress was the posteromedial section of the puborectal muscle. The mean stress values were 16.89 MPa at the end of fetal head extension. The LAM was elongated by nearly 2.5 times from its initial resting position.ConclusionsThe cardinal movements of labor significantly affect the subsequent heterogeneous stress distribution in the LAM. The absolute stress values were highest in portions of the muscle that arise from the pubic bone. These areas are at the highest risk for muscle injuries with long-term complications.
Road traffic accidents cause one of the highest numbers of severe injuries. The numbers of deaths and seriously injured citizens prove that traffic accidents and their consequences are still a serious problem to be solved. Virtual human body models play an important role to assess injuries during impact loading especially for scenarios, where complex dynamical loading is taken into account. The most suffering group is so called vulnerable road users (VRU) like powered two-wheelers (PTW) riders. The presented work contributes to increasing safety of PTW riders by implementing virtual human body model for injury risk analysis. The scalable hybrid virtual human body model Virthuman, which was formerly developed, validated and demonstrated in impact scenarios, is improved by updated neck and shoulder models in order to describe the realistic kinematics during complex long duration impact loading and presented in the oblique impact scenario compared to the THUMS results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.