Recent theoretical advances have motivated the hypothesis that the periaqueductal gray (PAG) participates in behaviors that involve changes in the autonomic control of visceromotor activity, including during cognitively demanding tasks. We used ultra-high-field (7 tesla) fMRI to measure human brain activity at 1.1 mm resolution while participants completed a working memory task. Consistent with prior work, participants were less accurate and responded more slowly with increasing memory load-signs of increasing task difficulty. Whole-brain fMRI analysis revealed increased activity in multiple cortical areas with increasing working memory load, including frontal and parietal cortex, dorsal cingulate, supplementary motor area, and anterior insula. Several dopamine-rich midbrain nuclei, such as the substantia nigra and ventral tegmental area, also exhibited load-dependent increases in activation. To investigate PAG involvement during cognitive engagement, we developed an automated method for segmenting and spatially normalizing the PAG. Analyses using cross-validated linear support vector machines showed that the PAG discriminated high versus low working memory load conditions with 95% accuracy in individual subjects based on activity increases in lateral and ventrolateral PAG. Effect sizes in the PAG were comparable in magnitude to those in many of the cortical areas. These findings suggest that cognitive control is not only associated with cortical activity in the frontal and parietal lobes, but also with increased activity in the subcortical PAG and other midbrain regions involved in the regulation of autonomic nervous system function.
The ability to learn new emotion concepts is adaptive and socially valuable as it communicates culturally held understandings about values, goals, and experiences. Yet, little work has examined the underlying mechanisms that allow for new emotion concepts and words to be integrated into the conceptual system. One such mechanism may be conceptual combination, or the ability to form novel concepts by dynamically combining previously acquired conceptual knowledge. In this study, we used event‐related potentials (ERPs) to investigate the electrophysiological correlates of novel emotion concept acquisition via conceptual combination. Participants were briefly trained on 30 novel emotion combinations, each consisting of two English emotion words (the components; e.g., “sadness + fatigue”) and a pseudoword (the target; e.g., “despip”). Participants then completed a semantic congruency task while ERPs were recorded. On each trial, two components were presented serially, followed by a target; participants judged whether the target was a valid combination of the preceding components. Targets could be correct or incorrect trained pseudowords, or new untrained pseudowords. Furthermore, components could be presented in reversed order (e.g., “fatigue” then “sadness”) or as synonyms (e.g., “exhaustion” for “fatigue”). Consistent with our main hypotheses, we found a main effect of target, such that the correct combinations showed reduced N400 amplitudes when compared to both incorrect and untrained pseudowords. Critically, this effect held regardless of how the preceding components were presented, suggesting deeper semantic learning. These results extend prior findings on conceptual combination and novel word learning, and are congruent with predictive processing accounts of brain function.
The brain continuously anticipates the energetic needs of the body and prepares to meet those needs before they arise, a process called allostasis. In support of allostasis, the brain continually models the internal state of the body, a process called interoception. Using published tract-tracing studies in non-human animals as a guide, we previously identified a large-scale system supporting allostasis and interoception in the human brain with functional magnetic resonance imaging (fMRI) at 3 Tesla. In the present study, we replicated and extended this system in humans using 7 Tesla fMRI (N = 91), improving the precision of subgenual and pregenual anterior cingulate topography as well as brainstem nuclei mapping. We verified over 90% of the anatomical connections in the hypothesized allostatic-interoceptive system observed in non-human animal research. We also identified functional connectivity hubs verified in tract-tracing studies but not previously detected using 3 Tesla fMRI. Finally, we demonstrated that individuals with stronger fMRI connectivity between system hubs self-reported greater interoceptive awareness, building on construct validity evidence from our earlier paper. Taken together, these results strengthen evidence for the existence of a whole-brain system supporting interoception in the service of allostasis and we consider the implications for mental and physical health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.