All-optical switching (AOS) of the magnetization in synthetic ferrimagnetic Pt/Co/Gd stacks has received considerable interest due to its high potential towards integration with spintronic devices, such as magnetic tunnel junctions (MTJs), to enable ultrafast memory applications. Post-annealing is an essential process in the MTJ fabrication to obtain optimized tunnel magnetoresistance (TMR) ratio. However, with integrating AOS with an MTJ in prospect, the annealing effects on single-pulse AOS and domain wall (DW) dynamics in the Pt/Co/Gd stacks haven't been systematically investigated yet. In this study, we experimentally explore the annealing effect on AOS and field-induced DW motion in Pt/Co/Gd stacks. The results show that the threshold fluence (š¹ 0 ) for AOS is reduced significantly as a function of annealing temperature (š š ) ranging from 100ā to 300ā. Specifically, a 28% reduction of š¹ 0 can be observed upon annealing at 300ā, which is a critical š š for MTJ fabrication.Lastly, we also demonstrate a significant increase of the DW velocity in the creep regime upon annealing, which is attributed to annealing-induced Co/Gd interface intermixing. Our findings show that annealed Pt/Co/Gd system facilitates ultrafast and energy-efficient AOS, as well as enhanced DW velocity, which is highly suitable towards opto-spintronic memory applications.
Significance Spintronic devices have become promising candidates for next-generation memory architecture. However, state-of-the-art devices, such as perpendicular magnetic tunnel junctions (MTJs), are still fundamentally constrained by a subnanosecond speed limitation, which has remained a long-lasting scientific obstacle in the ultrafast spintronics field. The highlight of our work is the demonstration of an optospintronic tunnel junction, an all-optical MTJ device which emerges as a new category of integrated photonicāspintronic memory. We demonstrate 1) laser-induced deterministic and efficient writing by an all-optical approach and electrical readout by tunnel magnetoresistance, 2) writing speed within 10 ps, demonstrated by femtosecond-resolved measurements, and 3) integration with state-of-the-art MTJ performance and a complementary metalāoxideāsemiconductor-compatible fabrication progress.
Perpendicular magnetic tunnel junctions are one of the building blocks for spintronic memories, which allow fast nonvolatile data access, offering substantial potentials to revolutionize the mainstream computing architecture. However, conventional switching mechanisms of such devices are fundamentally hindered by spin polarized currents, either spin transfer torque or spin orbit torque with spin precession time limitation and excessive power dissipation. These physical constraints significantly stimulate the advancement of modern spintronics. Here, we report an optospintronic tunnel junction using a photonic-spintronic combination. This composite device incorporates an all-optically switchable Co/Gd bilayer coupled to a CoFeB/MgO-based perpendicular magnetic tunnel junction by the Ruderman-Kittel-Kasuya-Yosida interaction. A picosecond all-optical operation of the optospintronic tunnel junction is explicitly confirmed by time-resolved measurements. Moreover, the device shows a considerable tunnel magnetoresistance and thermal stability. This proof-of-concept device represents an essential step towards ultrafast photonic memories with THz data access, as well as ultralow power consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsācitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright Ā© 2025 scite LLC. All rights reserved.
Made with š for researchers
Part of the Research Solutions Family.