Prunella vulgaris has been used therapeutically for inflammation-related conditions for centuries, but systematic studies of its anti-inflammatory activity are lacking and no specific active components have been identified. In this study, water and ethanol extracts of four P. vulgaris accessions were applied to RAW 264.7 mouse macrophages, and the ethanol extracts significantly inhibited lipopolysaccharide (LPS)-stimulated prostaglandin E2 (PGE2) and nitric oxide (NO) production at 30 μg/mL without affecting cell viability. Extracts from different accessions of P. vulgaris were screened for anti-inflammatory activity to identify accessions with the greatest activity. The inhibition of PGE2 and NO production by selected extracts was dose-dependent, with significant effects seen at concentrations as low as 10 μg/mL. Fractionation of ethanol extracts from the active accession, Ames 27664, suggested fractions 3 and 5 as possible major contributors to the overall activity. Rosmarinic acid (RA) content inP. vulgaris was found to independently inhibit inflammatory response, but it only partially explained the extracts' activity. LPS-induced cyclooxygenase-2 (COX-2) and nitric oxide synthase (iNOS) protein expression were both attenuated by P. vulgaris ethanol extracts, whereas RA inhibited only COX-2 expression. Prunella vulgaris has been used therapeutically for inflammation-related conditions for centuries, but systematic studies of its anti-inflammatory activity are lacking and no specific active components have been identified. In this study, water and ethanol extracts of four P. vulgaris accessions were applied to RAW 264.7 mouse macrophages, and the ethanol extracts significantly inhibited lipopolysaccharide (LPS)-stimulated prostaglandin E2 (PGE2) and nitric oxide (NO) production at 30 μg/mL without affecting cell viability. Extracts from different accessions of P. vulgaris were screened for anti-inflammatory activity to identify accessions with the greatest activity. The inhibition of PGE2 and NO production by selected extracts was dose-dependent, with significant effects seen at concentrations as low as 10 μg/mL. Fractionation of ethanol extracts from the active accession, Ames 27664, suggested fractions 3 and 5 as possible major contributors to the overall activity. Rosmarinic acid (RA) content in P. vulgaris was found to independently inhibit inflammatory response, but it only partially explained the extracts' activity. LPS-induced cyclooxygenase-2 (COX-2) and nitric oxide synthase (iNOS) protein expression were both attenuated by P. vulgaris ethanol extracts, whereas RA inhibited only COX-2 expression.
Due to the popularity of Echinacea as a dietary supplement, researchers have been actively investigating which Echinacea constituent or groups of constituents are necessary for immune modulating bioactivities. Our prior studies indicate that alkylamides may play an important role in the inhibition of prostaglandin E2 (PGE2) production. HPLC fractionation, employed to elucidate interacting anti-inflammatory constituents from ethanol extracts of E. purpurea, E. angustifolia, E. pallida, and E. tennesseensis identified fractions containing alkylamides and ketones as key anti-inflammatory contributors using lipopolysaccharide induced PGE2 production in RAW264.7 mouse macrophage cells. Nitric oxide (NO) production and parallel cytotoxicity screens were also employed to substantiate an anti-inflammatory response. Echinacea pallida showed significant inhibition of PGE2 with a first round fraction, containing GC-MS peaks for Bauer Ketones 20, 21, 22, 23, and 24, with 23 and 24 identified as significant contributors to this PGE2 inhibition. Chemically synthesized Bauer Ketones 21 and 23 at 1 μM each significantly inhibited both PGE2 and NO production. Three rounds of fractionation were produced from an E. angustifolia extract. GC-MS analysis identified the presence of Bauer Ketone 23 in third round Fraction 3D32 and Bauer Alkylamide 11 making up 96% of third round Fraction 3E40. Synthetic Bauer Ketone 23 inhibited PGE2 production to 83 % of control and synthetic Bauer Alkylamide 11 significantly inhibited PGE2 and NO production at the endogenous concentrations determined to be present in their respective fraction, thus each constituent partially explained the in vitro anti-inflammatory activity of their respective fraction. From this study two key contributors to the anti-inflammatory properties of E. angustifolia were identified as Bauer Alkylamide 11 and Bauer Ketone 23.
Hypericum perforatum (St. John’s wort) is an herb widely used as supplement for mild to moderate depression. Our prior studies revealed synergistic anti-inflammatory activity associated with 4 bioactive compounds in a fraction of H. perforatum ethanol extract. Whether these 4 compounds also contributed to the ethanol extract activity was addressed in the research reported here. Despite the popularity of H. perforatum, other Hypericum species with different phytochemical profiles could have their anti-inflammatory potentials attributed to these or other compounds. In the current study, ethanol extracts of different Hypericum species were compared for their inhibitory effect on LPS-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW 264.7 mouse macrophages. Among these extracts, those made from H. perforatum and H. gentianoides demonstrated stronger overall efficacy. LC-MS analysis indicated the 4 compounds in H. perforatum extract and pseudohypericin in all active fractions. The 4 compounds accounted for a significant part of the extract’s inhibitory activity on PGE2, NO, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW 264.7 as well as peritoneal macrophages. Pseudohypericin was the most important contributor of the anti-inflammatory potential among the 4 compounds. The lipophilic fractions of H. gentianoides extract, which did not contain the previously identified active constituents, decreased PGE2 and NO potently. These fractions were rich in acylphloroglucinols, including uliginosin A that accounted for a proportion of the anti-inflammatory activity observed with the active fractions. Overall, the current study revealed a different group of major anti-inflammatory constituents in H. gentianoides, while showing that a previously identified 4 compounds combination was important for H. perforatum’s anti-inflammatory potential.
Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq) for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range ofantioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM) [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less studied species. The database is publicly available and can be used by researchers in medicine and plant biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.