We consider the one dimensional Schrödinger equation with a bilinear control and prove the rapid stabilization of the linearized equation around the ground state. The feedback law ensuring the rapid stabilization is obtained using a transformation mapping the solution to the linearized equation on the solution to an exponentially stable target linear equation. A suitable condition is imposed on the transformation in order to cancel the non-local terms arising in the kernel system. This conditions also insures the uniqueness of the transformation. The continuity and invertibility of the transformation follows from exact controllability of the linearized system.
We study the rapid stabilization of the heat equation on the 1-dimensional torus using the backstepping method with a Fredholm transformation. We prove that, under some assumption on the control operator, two scalar controls are necessary and sufficient to get controllability and rapid stabilization. This classical framework allows us to present the backstepping method with Fredholm transformations on Laplace operators in a sharp functional setting, which is the main objective of this work. Finally, we prove that the same Fredholm transformation also leads to the local rapid stability of the viscous Burgers equation.
This paper deals with the rapid stabilization of a degenerate parabolic equation with a right Dirichlet control. Our strategy consists in applying a backstepping strategy, which seeks to find an invertible transformation mapping the degenerate parabolic equation to stabilize into an exponentially stable system whose decay rate is known and as large as we desire. The transformation under consideration in this paper is Fredholm. It involves a kernel solving itself another PDE, at least formally. The main goal of the paper is to prove that the Fredholm transformation is well-defined, continuous and invertible in the natural energy space. It allows us to deduce the rapid stabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.