Smart cameras are increasingly used in surveillance solutions in public spaces. Contemporary computer vision applications can be used to recognize events that require intervention by emergency services. Smart cameras can be mounted in locations where citizens feel particularly unsafe, e.g., pathways and underpasses with a history of incidents. One promising approach for smart cameras is edge AI, i.e., deploying AI technology on IoT devices. However, implementing resource-demanding technology such as image recognition using deep neural networks (DNN) on constrained devices is a substantial challenge. In this paper, we explore two approaches to reduce the need for compute in contemporary image recognition in an underpass. First, we showcase successful neural network pruning, i.e., we retain comparable classification accuracy with only 1.1% of the neurons remaining from the state-of-the-art DNN architecture. Second, we demonstrate how a CycleGAN can be used to transform out-of-distribution images to the operational design domain. We posit that both pruning and CycleGANs are promising enablers for efficient edge AI in smart cameras. CCS CONCEPTS • Computing methodologies → Activity recognition and understanding; Object recognition; Neural networks.
Acute respiratory distress syndrome (ARDS) is a life-threatening condition with mortality rates between 30-50%. Althoughin vitromodels replicate some aspects of ARDS, small and large animal models remain the primary research tools due to the multifactorial nature of the disease. When using these animal models, histology serves as the gold standard method to confirm lung injury and exclude other diagnoses as high-resolution chest images are often not feasible. Semi-quantitative scoring performed by independent observers is the most common form of histologic analysis in pre-clinical animal models of ARDS. Despite progress in standardizing analysis procedures, objectively comparing histological injuries remains challenging, even for highly-trained pathologists. Standardized scoring simplifies the task and allows better comparisons between research groups and across different injury models, but it is time-consuming, and interobserver variability remains a significant concern. Convolutional neural networks (CNNs), which have emerged as a key tool in image analysis, could automate this process, potentially enabling faster and more reproducible analysis. Here we explored the reproducibility of human standardized scoring for an animal model of ARDS and its suitability for training CNNs for automated scoring at the whole slide level. We found large variations between human scorers, even for pre-clinical experts and board-certified pathologies in evaluating ARDS animal models. We demonstrate that CNNs (VGG16, EfficientNetB4) are suitable for automated scoring and achieve up to 83% F1-score and 78% accuracy. Thus, CNNs for histopathological classification of acute lung injury could help reduce human variability and eliminate a time-consuming manual research task with acceptable performance.
Smart cameras are increasingly used in surveillance solutions in public spaces. Contemporary computer vision applications can be used to recognize events that require intervention by emergency services. Smart cameras can be mounted in locations where citizens feel particularly unsafe, e.g., pathways and underpasses with a history of incidents. One promising approach for smart cameras is edge AI, i.e., deploying AI technology on IoT devices. However, implementing resource-demanding technology such as image recognition using deep neural networks (DNN) on constrained devices is a substantial challenge. In this paper, we explore two approaches to reduce the need for compute in contemporary image recognition in an underpass. First, we showcase successful neural network pruning, i.e., we retain comparable classification accuracy with only 1.1% of the neurons remaining from the state-of-the-art DNN architecture. Second, we demonstrate how a CycleGAN can be used to transform out-of-distribution images to the operational design domain. We posit that both pruning and CycleGANs are promising enablers for efficient edge AI in smart cameras.
Machine Learning (ML) is a fundamental part of modern perception systems. In the last decade, the performance of computer vision using trained deep neural networks has outperformed previous approaches based on careful feature engineering. However, the opaqueness of large ML models is a substantial impediment for critical applications such as in the automotive context. As a remedy, Gradient-weighted Class Activation Mapping (Grad-CAM) has been proposed to provide visual explanations of model internals. In this paper, we demonstrate how Grad-CAM heatmaps can be used to increase the explainability of an image recognition model trained for a pedestrian underpass. We argue how the heatmaps support compliance to the EU's seven key requirements for Trustworthy AI. Finally, we propose adding automated heatmap analysis as a pipe segment in an MLOps pipeline. We believe that such a building block can be used to automatically detect if a trained ML-model is activated based on invalid pixels in test images, suggesting biased models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.