Dose enhancement up to more than a factor of 100 was found in an environment of tissue-equivalent polymethylmethacrylate (PMMA) close to the surface of a thin metallic gold foil. The enhancement factors were determined for heavily filtered X rays (40 to 120 kV tube potential) under backscatter conditions, using thin-film radiation detectors with sub-micrometer resolution. The secondary electrons were found to range up to some 10 microm in tissue-equivalent material. Correspondingly, enhanced biological effects could be shown in vitro, using monolayers of C3H 10T1/2 mouse embryo fibroblasts exposed in intimate contact with the gold surface. The decay of the survival curves of cells irradiated on gold was significantly steeper than for those obtained from irradiation between PMMA disks with the same dose, also giving biological evidence for significantly enhanced doses at the gold interface. The shape of the inactivation curves resembled those for high-LET radiation, lacking a pronounced shoulder at the lower doses. Quantitatively, doses of e.g. 50 mGy (80 kV X rays) in homogeneous PMMA caused about 35% cell killing and 200 mGy about 80% when the cells were irradiated at the gold surface. From a comparison of these inactivation numbers with those found for irradiation between PMMA disks, biological dose enhancement factors for the cell system considered ranged up to about a factor of 50. In addition to cell inactivation, the in vitro irradiations of C3H 10T1/2 cells adjacent to the gold surface resulted in increased rates of oncogenic transformation. A dose of 100 mGy 80 kV X rays (measured in homogeneous PMMA) caused a frequency at an inserted gold surface comparable to that obtained with a dose of about 4.5 Gy of 60Co gamma rays in homogeneous PMMA.
Rearrangements of the ret oncogene were investigated in papillary thyroid carcinomas (PTC) from 51 Belarussian children with a mean age of 3 years at the time of the Chernobyl radiation accident. For comparison, 16 PTC from exposed Belarussian adults and 16 PTC from German patients without radiation history were included in the study. ret rearrangements were detected and specified by RT-PCR and direct sequencing using specific primers for ret/PTC1, 2 and 3. Only ret/PTC1, and no ret/PTC3, was found in the adult patients, with a frequency of 69% for the Belarussian cases, but of only 19% in the German patients. In contrast, 13 ret/PTC3 (25.5%) and 12 ret/PTC1 (23.5%) rearrangements were present in PTC from Belarussian children. Thus, our study reveals about a 1:1 ratio of ret/PTC3 and ret/PTC1, in contrast to earlier studies with lower numbers of cases and exhibiting a high predominance of ret/PTC3 (ratio about 3:1). A ratio (2.5:1) similar to that in earlier investigations (diagnosed 1991-94) was obtained for cases included in our study that were diagnosed in 1993/94. The present data suggest that ret/PTC3 may be typical for radiation-associated childhood PTC with a short latency period, whereas ret/PTC1 may be a marker for later-occurring PTC of radiation-exposed adults and children. Int.
Irradiation of human lymphocytes by alpha-particles under different conditions has been seen to be substantially more effective in the induction of dicentric chromosomes than irradiation by gamma-rays. However, the relative biological effectiveness (RBE) determined in these studies differed by a factor of more than 10. These variations in RBE are likely to be due in part to differing exposure conditions. Therefore, a technique designed to insure uniformity of irradiation was developed in the present study, and complications due to the cell cycle kinetics were controlled. After stimulation with phytohaemagglutinin (PHA), separated lymphocytes were allowed to attach for 3 h to the thin foil bottom of an irradiation chamber. Cell monolayers were exposed with alpha-particles from Am. Strong over-dispersion was noted for the cell-to-cell variance of the number of dicentrics. The dose response of dicentrics was linear, with a yield of 0.27 dicentrics per cell and per Gy. This corresponds to a low dose RBE of 15 relative to Cs gamma-ray exposure under the same experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.