The aim of this cohort study was to assess the risk of developing cancer, specifically leukaemia, tumours of the central nervous system and lymphoma, before the age of 15 years in children previously exposed to computed tomography (CT) in Germany. Data for children with at least one CT between 1980 and 2010 were abstracted from 20 hospitals. Cancer cases occurring between 1980 and 2010 were identified by stochastic linkage with the German Childhood Cancer Registry (GCCR). For all cases and a sample of non-cases, radiology reports were reviewed to assess the underlying medical conditions at time of the CT. Cases were only included if diagnosis occurred at least 2 years after the first CT and no signs of cancer were recorded in the radiology reports. Standardised incidence ratios (SIR) using incidence rates from the general population were estimated. The cohort included information on 71,073 CT examinations in 44,584 children contributing 161,407 person-years at risk with 46 cases initially identified through linkage with the GCCR. Seven cases had to be excluded due to signs possibly suggestive of cancer at the time of first CT. Overall, more cancer cases were observed (O) than expected (E), but this was mainly driven by unexpected and possibly biased results for lymphomas. For leukaemia, the SIR (SIR = O/E) was 1.72 (95 % CI 0.89-3.01, O = 12), and for CNS tumours, the SIR was 1.35 (95 % CI 0.54-2.78, O = 7). Despite careful examination of the medical information, confounding by indication or reverse causation cannot be ruled out completely and may explain parts of the excess. Furthermore, the CT exposure may have been underestimated as only data from the participating clinics were available. This should be taken into account when interpreting risk estimates.
Dose enhancement up to more than a factor of 100 was found in an environment of tissue-equivalent polymethylmethacrylate (PMMA) close to the surface of a thin metallic gold foil. The enhancement factors were determined for heavily filtered X rays (40 to 120 kV tube potential) under backscatter conditions, using thin-film radiation detectors with sub-micrometer resolution. The secondary electrons were found to range up to some 10 microm in tissue-equivalent material. Correspondingly, enhanced biological effects could be shown in vitro, using monolayers of C3H 10T1/2 mouse embryo fibroblasts exposed in intimate contact with the gold surface. The decay of the survival curves of cells irradiated on gold was significantly steeper than for those obtained from irradiation between PMMA disks with the same dose, also giving biological evidence for significantly enhanced doses at the gold interface. The shape of the inactivation curves resembled those for high-LET radiation, lacking a pronounced shoulder at the lower doses. Quantitatively, doses of e.g. 50 mGy (80 kV X rays) in homogeneous PMMA caused about 35% cell killing and 200 mGy about 80% when the cells were irradiated at the gold surface. From a comparison of these inactivation numbers with those found for irradiation between PMMA disks, biological dose enhancement factors for the cell system considered ranged up to about a factor of 50. In addition to cell inactivation, the in vitro irradiations of C3H 10T1/2 cells adjacent to the gold surface resulted in increased rates of oncogenic transformation. A dose of 100 mGy 80 kV X rays (measured in homogeneous PMMA) caused a frequency at an inserted gold surface comparable to that obtained with a dose of about 4.5 Gy of 60Co gamma rays in homogeneous PMMA.
Radiation protection is a topic of great public concern and of many scientific investigations, because ionizing radiation is an established risk factor for leukaemia and many solid tumours. Exposure of the public to ionizing radiation includes exposure to background radiation, as well as medical and occupational exposures. A large fraction of the exposure from diagnostic procedures comes from medical imaging. Computed tomography (CT) is the major single contributor of diagnostic radiation exposure. An increase in the use of CTs has been reported over the last decades in many countries. Children have smaller bodies and lower shielding capacities, factors that affect the individual organ doses due to medical imaging. Several risk models have been applied to estimate the cancer burden caused by ionizing radiation from CT. All models predict higher risks for cancer among children exposed to CT as compared to adults. However, the cancer risk associated with CT has not been assessed directly in epidemiological studies. Here, plans are described to conduct an historical cohort study to investigate the cancer incidence in paediatric patients exposed to CT before the age of 15 in Germany. Patients will be recruited from radiology departments of several hospitals. Their individual exposure will be recorded, and time-dependent cumulative organ doses will be calculated. Follow-up for cancer incidence via the German Childhood Cancer Registry will allow computation of standardized incidence ratios using population-based incidence rates for childhood cancer. Dose-response modelling and analyses for subgroups of children based on the indication for and the result of the CT will be performed.
Overall, we observed no increase in cancer risk among children and youths with very low radiation doses from diagnostic radiation, which is compatible with model calculations. The growing use of CT warrants further studies to assess associated cancer risk. Our work is an early contribution of epidemiologic data for quantifying these risks among young patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.