Human herpes virus type 8 (HHV-8) is the causative agent of Kaposi’s sarcoma (KS). We systematically reviewed literature published between 1998 and 2017, according to the PRISMA guidelines, to understand the distribution of HHV-8 infection in Africa. More than two-thirds (64%) of studies reported on seroprevalence and 29.3% on genotypes; 9.5% were on both seroprevalence and genotypes. About 45% of African countries had data on HHV-8 seroprevalence exclusively, and more than half (53%) had data on either seroprevalence or genotypes. Almost half (47%) of the countries had no data on HHV-8 infection. There was high heterogeneity in the types of tests and interpretation algorithms used in determining HHV-8 seropositivity across the different studies. Generally, seroprevalence ranged from 2.0% in a group of young children in Eritrea to 100% in a small group of individuals with KS in Central African Republic, and in a larger group of individuals with KS in Morocco. Approximately 16% of studies reported on children. Difference in seroprevalence across the African regions was not significant (95% CI, χ2 = 0.86; p = 0.35), although specifically a relatively significant level of infection was observed in HIV-infected children. About 38% of the countries had data on K1 genotypes. K1 genotypes A, A5, B, C, F and Z occurred at frequencies of 5.3%, 26.3%, 42.1%, 18.4%, 5.3% and 2.6%, respectively. Twenty-three percent of the countries had data for K15 genotypes, and genotypes P, M and N occurred at frequencies of 52.2%, 39.1%, and 8.7%, respectively. Data on HHV-8 inter-genotype recombinants in Africa are scanty. HHV-8 may be endemic in the entire Africa continent but there is need for a harmonized testing protocol for a better understanding of HHV-8 seropositivity. K1 genotypes A5 and B, and K15 genotypes P and M, from Africa, should be considered in vaccine design efforts.
Background: The proportion of individuals with a history of exposure (‘pre-exposure’) to antiretrovirals (ARVs) prior to formal initiation into antiretroviral treatment (ART) is unknown.Objectives: This study describes the detection of ARVs in plasma and/or hair, of persons who self-reported no pre-exposure to ART at their first-time initiation onto ART in three clinics in the province of Limpopo, South Africa (SA).Method: Concentrations of tenofovir (TDF), emtricitabine (FTC) and efavirenz (EFV) in the plasma and hair of individuals initiating ART were analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Next generation sequences of HIV polymerase gene were analysed with Geneious software 11.15, and drug resistance (DR) mutations were determined according to the Stanford HIV Drug-Resistance database. Participants’ demographic data were collected on a structured questionnaire. Data that describe prior exposure to ARV were also collected by this self-reporting method.Results: Paired blood and hair samples were collected from 77 individuals newly initiated onto ART from 2017 to 2019. We detected at least one of the drugs in the plasma or hair of 41/77 (53.2%) patients who responded with a ‘no’ to the question ‘have you received ARVs before initiation onto ART?’ Thirty-one participants (n = 31/77, 40.3%) had TDF in either plasma or hair. Emtricitabine and EFV were found in the plasma or hair of 12/77 (15.6%) and 25/77 (32.4%) of participants respectively. Six (n = 6/77, 7.792%) had all three ARVs in plasma or hair. Prevalence of DR mutations at the 5% significance threshold level in those known to have had ARV-exposure determined by LC-MS/MS prior to ART-initiation was not significant (χ2 = 0.798; p = 0.372), when compared to those who had no prior exposure but still showed DR.Conclusion: Antiretroviral levels in the hair of individuals initiating treatment imply prolonged prior-exposure to that ARV. The presence of ARV in plasma and hair of persons living with HIV (PLWH) who deny ARV-use, requires an explanation. A larger study at multiple sites and regular DR surveillance of ART-naïve PLWH will be necessary to confirm the generalisability of these findings to the wider South African population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.