Epigenetic modifications are involved in cancer pathogenesis, and HDACis are considered potential therapeutic agents. We and others have shown the inhibitory activity of EGCG on HDAC1. But little is known about the effect of EGCG as on epigenetic regulation in cancer. Here, we try to demonstrate that EGCG acts as an HDACi downregulated APP expression, which was pathophysiologically upregulated in cancers and exerts a key role in cancer cell growth. We used PC-12 cells, SK-N-SH cells and primary tumor tissues for our analysis. Male 4-week-old athymic nude mice were used for heterotopic tumor growth assay. We employed Western blotting analysis to detect Bcl-2, Bax, APP, caspase-3, caspase-7, HDAC1 and H4Ac. We used AnnexinV-FITC and TUNEL staining for apoptosis detection. Tumor tissues were examined by immunohistochemical staining. We demonstrated that EGCG suppresses the growth of xenografted adrenal pheochromocytoma. Flow cytometry analysis and TUNEL staining showed that EGCG induced the apoptosis. Treatment with EGCG resulted in decrease in Bcl-2 but increase in Bax and activated caspase-3 and caspase-7. HDAC inhibitor EGCG leaded to hyperacetylated histone H4 by immunofluorescence. EGCG decreased APP levels by immunofluorescence staining and Western blot analysis. Silencing specific to HDAC1 leaded to caspase-3 and caspase-7 activation and cleavage. Our results are the first to demonstrate a functional interaction between EGCG and APP in suppression tumor growth, and provide a new epigenetic effects of EGCG on antitumor.
Elevated β-amyloid (Aβ) is a hallmark of Alzheimer's disease (AD). Recent evidence has suggested that the receptor of advanced glycation end products (RAGE) is a key target for Aβ-induced perturbation in AD, and blockade of RAGE significantly alleviates synaptic injury. Our previous study has suggested that β-asarone could reduce neuronal apoptosis and improve memory deficits in β-amyloid precursor protein and presenilin-1 (APP/PS1) double transgenic AD-model mice. In the present study, we evaluated the effects of β-asarone on amyloidosis in APP/PS1 mice. We found that the survival of neurons of APP/PS1 mice was improved by β-asarone, meanwhile, β-asarone decreased Aβ deposition and down-regulated Aβ1-42 levels in cortex and hippocampus of APP/PS1 mice brain. Interestingly, the level of RAGE was also significantly down-regulated by β-asarone. Our findings suggest that β-asarone might be effective for the treatment of AD, and the decreasing effects of β-asarone on Aβ might associate with its down-regulation of RAGE.
Epigenetic modifications are involved in the pathogenesis of cancer, and histone deacetylase inhibitors are considered potential therapeutic agents. Histone tails undergo acetylation at lysine residues, which is associated with transcriptional activation. However, previous studies indicated that as histone deacetylase inhibitors, both (À)-epigallocatechin-3-gallate and valproic acid presented the effects of downregulation of amyloid precursor protein expression, which resulted in the induction of apoptosis. The downregulation of amyloid precursor protein, instead of conventionally activating gene expression as histone deacetylase inhibitor, was attractive. However, there was no relevant report on the correlation of the expression of amyloid precursor protein and histone deacetylase 1 in cancer. In the present study, we detected the expression of amyloid precursor protein and histone deacetylase 1 in hepatocellular carcinoma and adjacent tissues, as well as the correlations among histone deacetylase 1, amyloid precursor protein, and tumor stage. The results showed that the expressions of amyloid precursor protein and histone deacetylase 1 were significantly higher in hepatocellular carcinoma tissues than that in adjacent tissues (P < .05), however, there was no statistical difference between amyloid precursor protein and histone deacetylase 1 with tumor stages. The present findings provided more foundation for the study on amyloid precursor protein metabolism in cancer, especially on the regulation of amyloid precursor protein by histone deacetylases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.