For the efficient simulation of fluid flows governed by a wide range of scales a wavelet-based adaptive multi-resolution solver on heterogeneous parallel architectures is proposed for computational fluid dynamics. Both data-and task-based parallelisms are used for multicore and multi-GPU architectures to optimize the efficiency of a high-order wavelet-based multi-resolution adaptative scheme with a 6th-order adaptive central-upwind weighted essentially non-oscillatory scheme for discretization of the governing equations. A modified grid-block data structure and a new boundary reconstruction method are introduced. A new approach for detecting small scales without using buffer levels is introduced to obtain additional speed-up by minimizing the number of required blocks. Validation simulations are performed for a double-Mach reflection with different refinement criteria. The simulations demonstrate accuracy and computational performance of the solver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.