The approximate deconvolution model (ADM) for the large-eddy simulation of incompressible flows is detailed and applied to turbulent channel flow. With this approach an approximation of the unfiltered solution is obtained by repeated filtering. Given a good approximation of the unfiltered solution, the nonlinear terms of the filtered Navier–Stokes equations can be computed directly. The effect of nonrepresented scales is modeled by a relaxation regularization involving a secondary filter operation. Large-eddy simulations are performed for incompressible channel flow at Reynolds numbers based on the friction velocity and the channel half-width of Reτ=180 and Reτ=590. Both simulations compare well with direct numerical simulation (DNS) data and show a significant improvement over results obtained with classical subgrid scale models such as the standard or the dynamic Smagorinsky model. The computational cost of ADM is lower than that of dynamic models or the velocity estimation model.
An alternative approach to large-eddy simulation based on approximate deconvolution (ADM) is developed. The main ingredient is an approximation of the nonfiltered field by truncated series expansion of the inverse filter operator. A posteriori tests for decaying compressible isotropic turbulence show excellent agreement with direct numerical simulation. The computational overhead of ADM is similar to that of a scale-similarity model and considerably less than for dynamic models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.