An electroactive passivation for high-voltage diodes with bevel termination has been investigated based on diamondlike carbon (DLC) films. Variations of the DLC properties, i.e., conductivity and geometry, have been investigated by experiments and numerical simulations to the purpose of gaining an insight on their influence on the diode leakage current and breakdown voltage. The role played by the DLC/Si interface has been investigated by characterizing metal-DLC-Si devices. Both boron and nitrogen doping have been investigated, and a TCAD setup has been provided accounting for the main transport features of the DLC material with different doping configurations. A significant polarization effect has been observed in the DLC material, which improves the DLC performance as a passivation material. High-voltage diodes have been characterized and simulated with different DLC layers on top of the bevel termination in order to identify the role played by conductivity and polarization on the blocking state. The correlation of leakage current and voltage breakdown with the DLC doping and thickness is provided and explained by the TCAD simulation results.
The electron effective masses of [Formula: see text]N and [Formula: see text]N, two of the most promising wide bandgap materials for power and RF electronic applications, have been calculated using the predictions of the density functional theory (DFT). More specifically, the unfolding technique has been adopted to extract the effective band structure of the two alloys under investigation. It has been found that the AlGaN effective masses [Formula: see text] approximately follow the Vegard law. On the contrary, due to the larger amount of disorder inside the crystal, the ScAlN shows a non-monotonic change of [Formula: see text] as a function of the Sc concentration, which requires the DFT calculations to be consistently performed for an accurate prediction. The ScAlN effective masses as a function of Sc content have been reported in the range [Formula: see text] for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.