In this paper, we present the results of a study on 5-HMF production from fructose by means of heterogeneous catalysts in aqueous media. Mild conditions were used, setting the temperature between 393 K and 443 K. Cerium(IV) phosphates, different from other metal(IV)-phosphates, such as titanium and zirconium, have been characterized only recently. Ce-phosphates are quite complex structures as they show several arrangements. They undergo leaching of the phosphate group as phosphoric acid with consequent slow de-activation of the catalysts. The leaching rate depends on the nature and on the temperature of the calcination of the original phosphates. This opened the question whether the conversion was driven by the heterogeneous catalysts or by the soluble phosphoric acid. A specific test has demonstrated that the solid catalysts are responsible for the conversion of fructose into 5-HMF, more than the liquid phase. We have also demonstrated that the leached phosphate is substituted by fructose on the solid catalyst. A best yield of 52% with selectivity of 93% in batch and 24% in a flow reactor at 443 K (single pass) with a selectivity also >95% were obtained.
A new protocol for biodiesel production is proposed, based on a binary ZnO/TBAI (TBAI = tetrabutylammonium iodide) catalytic system. Zinc oxide acts as a heterogeneous, bifunctional Lewis acid/base catalyst, while TBAI plays the role of phase transfer agent. Being composed by the bulk form powders, the whole catalyst system proved to be easy to use, without requiring nano-structuration or tedious and costly preparation or pre-activation procedures. In addition, due to the amphoteric properties of ZnO, the catalyst can simultaneously promote transesterification and esterification processes, thus becoming applicable to common vegetable oils (e.g., soybean, jatropha, linseed, etc.) and animal fats (lard and fish oil), but also to waste lipids such as cooking oils (WCOs), highly acidic lipids from oil industry processing, and lipid fractions of municipal sewage sludge. Reusability of the catalyst system together with kinetic (Ea) and thermodynamic parameters of activation (ΔG‡ and ΔH‡) are also studied for transesterification reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.