Interface engineering of organic-inorganic halide perovskite solar cells (PSCs) plays a pivotal role in achieving high power conversion efficiency (PCE). In fact, perovskite photoactive layer needs to work synergistically with the other functional components of the cell, such as charge transporting/active buffer layers and electrodes. In this context, graphene and related twodimensional materials (GRMs) are promising candidates to tune "on demand" the interface properties of PSCs. In this work, we fully exploit the potential of GRMs by controlling the optoelectronic properties of hybrids between molybdenum disulfide (MoS2) and reduced graphene oxide (RGO) as hole transport layer (HTL) and active buffer layer (ABL) in mesoscopic methylammonium lead iodide (CH3NH3PbI3) perovskite (MAPbI3)-based PSC. We show that zero-dimensional MoS2 quantum dots (MoS2 QDs), derived by liquid phase exfoliated MoS2 flakes, provide both holeextraction and electron-blocking properties. In fact, on the one hand, intrinsic n-type doping-induced intra-band gap states effectively extract the holes through an electron injection mechanism. On the other hand, quantum confinement effects increase the optical band gap of MoS2 (from 1.4 eV for the flakes to > 3.2 for QDs), raising the minimum energy of its conduction band (from -4.3 eV for the flakes to -2.2 eV for QDs) above the one of conduction band of MAPbI3 (between -3.7 and -4 eV) and hindering electron collection. The van der Waals hybridization of MoS2 QDs with functionalized reduced graphene oxide (f-RGO), obtained by chemical silanization-induced linkage between RGO and (3-mercaptopropyl)trimethoxysilane, is effective to homogenize the deposition of HTLs or ABLs onto the perovskite film, since the two-dimensional (2D) nature of RGO effectively plug the pinholes of the MoS2 QDs films. Our "graphene interface engineering" (GIE) strategy based on van der Waals MoS2 QD/graphene hybrids enable MAPbI3-based PSCs to achieve PCE up to 20.12% (average PCE of 18.8%). The possibility to combine quantum and chemical effects into GIE, coupled with the recent success of graphene and GRMs as interfacial layer, represents a promising approach for the development of next-generation PSCs. Figure 1. (a) Sketch of mesoscopic MAPbI3-based PSC exploiting MoS2 QDs:f-RGO hybrids as both HTL and ABL. (b) Scheme of the energy band edge positions of the materials used in the different components of the assembled mesoscopic MAPbI3-based PSC. The energy band edge positions of MoS2 flakes and MoS2 QDs were determined from OAS and UPS measurements detailed along the text, while those of the other materials were taken from literature: FTO, 52 TiO2, 52 MAPbI3, 134-139 spiro-OMeTAD 52 and Au 52 . (c) State-of-the-art and predicted PCE evolution for PSCs, highlighting the synergistic potential of GIE and the formulation of advanced perovskite chemistries. The RGO flakes are effective to plug the pinholes MoS2 QDs films, thus to homogenize the HTL. The choice of the functionalization for RGO relies on the bifunctional r...
Small area hybrid organometal halide perovskite\ud based solar cells reached performances comparable to the multicrystalline\ud silicon wafer cells. However, industrial applications\ud require the scaling-up of devices to module-size. Here, we report\ud the first fully laser-processed large area (14.5 cm2) perovskite solar\ud module with an aperture ratio of 95% and a power conversion\ud efficiency of 9.3%. To obtain this result, we carried out thorough\ud analyses and optimization of three laser processing steps required\ud to realize the serial interconnection of various cells. By analyzing\ud the statistics of the fabricated modules, we show that the error\ud committed over the projected interconnection dimensions is sufficiently\ud lowto permit even higher aperture ratios without additional\ud efforts
Organo-metal halide perovskite demonstrates a large potential for achieving highly efficient photovoltaic devices. The scaling up process represents one of the major challenges to exploit this technology at the industrial level. Here, the scaling up of perovskite solar modules from 5x5 cm 2 to 10x10 cm 2 substrate area is reported by blade coating both the CH3NH3PbI3 perovskite and the Spiro-OMeTAD layers. The sequential deposition approach is used in which both lead iodide (PbI2) deposition and the conversion step are optimized by using additives. The PbI2 solution is modified by adding methylammonium iodide (MAI) which improve perovskite crystallinity and pore filling of the mesoporous TiO2 scaffold. Optimization of the conversion step is achieved by adding a small concentration of water into the MAI-based solution, producing large cubic CH3NH3PbI3 grains. The combination of the two modifications lead to a power conversion efficiency of 14.7% on a perovskite solar module with an active area of 47 cm 2 .
We have analysed and optimised a laser process for the sintering of the TiO2 layers in dye solar cells (DSCs). Through a thermographic characterisation of the process, we show that it is possible to scale and process large areas uniformly (16 cm2). We fabricated DSCs with nanocrystalline (nc)‐TiO2 films sintered by using pulsed ultraviolet laser with an average output power P varying from 1 W to 7 W whilst mainting a constant power conversion efficiency η. The highest efficiency reached for a laser sintered DSC was 7%. The time required to sinter 1 m2 of nc‐TiO2 film was found to decrease hyperbolically with P, which is important for determining process takt times. We quantified the embodied energy (EE) required to sinter 1 m2 of the active TiO2 layer for a variety of different processes, and found that the EE for the laser sintering process with a system wall plug efficiency of 3.5% to be competitive with the more conventional oven and belt furnace treatments. We outline the main features required from a laser system to carry out an efficient, energetically favourable and industrially applicable automated process with competitive throughput. Copyright © 2012 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.