Gas Turbine Engines operate at temperatures higher than current material temperature limits. This necessitates cooling the metal through internal or external means and/ or protecting the metal with coatings that have higher material limits. Film cooling is one of the major technologies allowing today’s gas turbines to operate at extremely high turbine inlet temperatures, consequently higher power density, and extend the cooled components life. Film cooling is a technique where a coolant is blown over the surface exposed to hot gas and a film of low temperature gas is maintained that protects the metal surface from the hot gas. The application of effective film-cooling techniques provides the first and best line of defense for hot gas path surfaces against the onslaught of extreme heat fluxes, serving to directly reduce the incident convective heat flux on the surface. The effectiveness of film cooling methods depends on the blowing ratio, shape of the cooling holes, and geometrical parameters such as the area ratio and diffusion angle. Film cooling is performed almost exclusively through the use of discrete holes. The holes can be of round or other shaped. A detailed study of the literature shows that the fan shaped has higher effectiveness when compared to other shapes. In this study a number of cooling hole shapes are evaluated numerically using the Computational Fluid Dynamics (CFD) tool ANSYS-CFX-11.0 with the objective of improving cooling effectiveness under a favorable pressure gradient main flow. In order to delineate the effects of shape from that of diffusion, a constant area ratio is assumed first. In the next set of analyses the effect of hole exit diffusion is considered. Results are presented in terms of surface temperatures and adiabatic effectiveness at three different blowing ratios for the different film cooling hole shapes analyzed. Comparison is made with reference to the fan shaped film cooling hole with forward and lateral angles of 10/10/10 degree respectively. Hole shapes that show improvement over the fan shaped hole are identified and optimized.
In this study, cylindrical and fan shaped film cooling holes are evaluated on the blade surface numerically, using the Computational Fluid Dynamics (CFD) tool ANSYS-CFX, with the objective of improving cooling effectiveness by understanding the flow pattern at the cooling hole exit. The coolant flow rates are adjusted for blowing ratios of 0.5, 1.0 & 1.5 (momentum flux ratios of 0.125, 0.5 & 1.125 respectively). The density ratio is maintained at 2.0. New shaped holes viz. straight, concave and convex trench holes are introduced and are evaluated under similar operating conditions. Results are presented in terms of surface temperatures and adiabatic effectiveness at three different blowing ratios for the different film cooling hole shapes analyzed. Comparison is made with reference to the fan shaped film cooling hole to bring out relative merits of different shapes. The new trench holes improved the film cooling effectiveness by allowing more residence time for coolant to spread laterally while directing smoothly onto the airfoil surface. While convex trench improved the centre-line effectiveness, straight trench improved the laterally-averaged and overall effectiveness at all blowing ratios. Concave trench improved the effectiveness at blowing ratios 0.5 and 1.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.