We study two simple yet general complexity classes, which provide a unifying framework for efficient query evaluation in areas like graph databases and information extraction, among others. We investigate the complexity of three fundamental algorithmic problems for these classes: enumeration, counting and uniform generation of solutions, and show that they have several desirable properties in this respect. Both complexity classes are defined in terms of non deterministic logarithmic-space transducers (NL transducers). For the first class, we consider the case of unambiguous NL transducers, and we prove constant delay enumeration, and both counting and uniform generation of solutions in polynomial time. For the second class, we consider unrestricted NL transducers, and we obtain polynomial delay enumeration, approximate counting in polynomial time, and polynomialtime randomized algorithms for uniform generation. More specifically, we show that each problem in this second class admits a fully polynomial-time randomized approximation scheme (FPRAS) and a polynomial-time Las Vegas algorithm (with preprocessing) for uniform generation. Remarkably, the key idea to prove these results is to show that the fundamental problem #NFA admits an FPRAS, where #NFA is the problem of counting the number of strings of length n (given in unary) accepted by a non-deterministic finite automaton (NFA). While this problem is known to be #P-complete and, more precisely, SpanL-complete, it was open whether this problem admits an FPRAS. In this work, we solve this open problem, and obtain as a welcome corollary that every function in SpanL admits an FPRAS.
In this work, we study two simple yet general complexity classes, based on logspace Turing machines, which provide a unifying framework for efficient query evaluation in areas like information extraction and graph databases, among others. We investigate the complexity of three fundamental algorithmic problems for these classes: enumeration, counting and uniform generation of solutions, and show that they have several desirable properties in this respect.Both complexity classes are defined in terms of non-deterministic logspace transducers (NL transducers). For the first class, we consider the case of unambiguous NL transducers, and we prove constant delay enumeration, and both counting and uniform generation of solutions in polynomial time. For the second class, we consider unrestricted NL transducers, and we obtain polynomial delay enumeration, approximate counting in polynomial time, and polynomial-time randomized algorithms for uniform generation. More specifically, we show that each problem in this second class admits a fully polynomial-time randomized approximation scheme (FPRAS) and a polynomial-time Las Vegas algorithm for uniform generation. Interestingly, the key idea to prove these results is to show that the fundamental problem #NFA admits an FPRAS, where #NFA is the problem of counting the number of strings of length n (given in unary) accepted by a non-deterministic finite automaton (NFA). While this problem is known to be #P-complete and, more precisely, SpanL-complete, it was open whether this problem admits an FPRAS. In this work, we solve this open problem, and obtain as a welcome corollary that every function in SpanL admits an FPRAS.
No abstract
Counting the answers to a query is a fundamental problem in databases, with several applications in the evaluation, optimization, and visualization of queries. Unfortunately, counting query answers is a #P-hard problem in most cases, so it is unlikely to be solvable in polynomial time. Recently, new results on approximate counting have been developed, specifically by showing that some problems in automata theory admit fully polynomial-time randomized approximation schemes. These results have several implications for the problem of counting the answers to a query; in particular, for graph and conjunctive queries. In this work, we present the main ideas of these approximation results, by using labeled DAGs instead of automata to simplify the presentation. In addition, we review how to apply these results to count query answers in different areas of databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.