Introduction: The evaluation of metabolism and the diagnostic classification of acid-base disorders has generated great controversy. Acid-base balance (ABB) is approached by means of the physicochemical and Henderson’s models.Objective: To compare two diagnostic approaches to ABB in patients with severe sepsis.Materials and methods: Prospective, descriptive study conducted in patients with severe sepsis. ABB was analyzed within the first 24 hours. The diagnosis was compared according to each model and the causes of the disorders were compared according to the physicochemical model.Results: 38 patients were included in the study, of which 21 (55%) were women; the mean age was 49 years, the median APACHE II, 13.28, and the mortality at 28 days, 24.3%. The traditional approach identified 8 patients with normal ABB, 20 with metabolic acidosis, and 10 with other disorders. Based on the physicochemical model, all subjects had acidosis and metabolic alkalosis. Increased strong ion difference (SID) was the most frequently observed disorder.Conclusion: The physicochemical model was useful to diagnose more patients with acid-base disorders. According to these results, all cases presented with acidosis and metabolic alkalosis; the most frequent proposed mechanism of acidosis was elevated SID. The nature of these disorders and their clinical relevance is yet to be established.
Introducción. La acidosis metabólica es una condición fisiopatológica frecuente en pacientes críticos. Esta alteración es evaluada mediante diferentes variables fisiológicas; sin embargo, su valor pronóstico aún no está bien definido. Objetivo. Evaluar la asociación entre variables del componente metabólico del estado ácido base (EAB) y mortalidad a 28 días en pacientes de una unidad de cuidados intensivos (UCI) en Bogotá D.C., Colombia. Materiales y métodos. Estudio de cohorte prospectivo realizado en 122 pacientes hospitalizados en una UCI entre enero y junio de 2013 y con una estancia mayor a 24 horas. Se tomaron muestras sanguíneas y gases arteriales de ingreso para el cálculo de las siguientes variables: Anion Gap (AG), Anion Gap corregido (AGc), Base exceso estándar (BEst), H+ metabólicos, Base exceso-aniones no medibles (BEua), pH, lactato, HCO3-st, Brecha de iones fuertes (BIF), puntaje Apache II, y puntaje SOFA. Se realizó un análisis bivariado, calculándose OR con un nivel de significancia de p<0.05, y luego uno multivariado, mediante un modelo de regresión logística, para identificar las variables asociadas con la mortalidad a 28 días. Resultados. De los 122 pacientes, 33 (27.7%) fallecieron a 28 días y 51 (48.7%) eran mujeres. La edad promedio fue 46.5 años (±15.7). En el análisis bivariado, las siguientes variables se asociaron significativamente con la mortalidad a 28 días: BIF: OR=1.150 (p=0.008), BEua: OR=0,897 (p=0.023), AG: OR=1.231 (p=0.002), AGc: OR=1.232, (p=0.003), pH arterial: OR=0.001, (p=0.023), APACHE II: OR=1.180 (p=0.001), HCO3- st: OR=0.841 (p=0.015). En el análisis multivariado, solo el puntaje APACHE II se asoció significativamente con la mortalidad a 28 días: OR=1.188 (p=0.008). Conclusión. Las variables fisiológicas que evalúan el componente metabólico del estado ácido-base, tanto las del modelo de Henderson, como las del modelo de Stewart, no se asociaron significativamente con la mortalidad a 28 días en la población de estudio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.