This paper describes a modified potential fields method for robot navigation, especially suited for unicycle-type non-holonomic mobile robots. The potential field is modified so as to enhance the relevance of obstacles in the direction of the robot motion. The relative weight assigned to front and side obstacles can be modified by the adjustment of one physically interpretable parameter. The resulting angular speed and linear acceleration of the robot can be expressed as functions of the linear speed, distance and relative orientation to the obstacles. For soccer robots, moving to a desired posture with and without the ball are relevant issues. To enable a soccer robot to dribble a ball, i.e., to move while avoiding obstacles and pushing the ball without losing it, under severe restrictions to ball holding capabilities, a further constraint among the angular speed, linear speed and linear acceleration is introduced. This dribbling behavior has been used successfully in the robots of the RoboCup Middle-Size League ISocRob team.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.