Impending extinction of the world’s primates due to human activities; immediate global attention is needed to reverse the trend.
Comparative extinction risk analysis is a common approach for assessing the relative plight of biodiversity and making conservation recommendations. However, the usefulness of such analyses for conservation practice has been questioned. One reason for underperformance may be that threats arising from global environmental changes (e.g., habitat loss, invasive species, climate change) are often overlooked, despite being widely regarded as proximal drivers of species' endangerment. We explore this problem by (i) reviewing the use of threats in this field and (ii) quantitatively investigating the effects of threat exclusion on the interpretation and potential application of extinction risk model results. We show that threat variables are routinely (59%) identified as significant predictors of extinction risk, yet while most studies (78%) include extrinsic factors of some kind (e.g., geographic or bioclimatic information), the majority (63%) do not include threats. Despite low overall usage, studies are increasingly employing threats to explain patterns of extinction risk. However, most continue to employ methods developed for the analysis of heritable traits (e.g., body size, fecundity), which may be poorly suited to the treatment of nonheritable predictors including threats. In our global mammal and continental amphibian extinction risk case studies, omitting threats reduced model predictive performance, but more importantly (i) reduced mechanistic information relevant to management; (ii) resulted in considerable disagreement in species classifications (12% and 5% for amphibians and mammals, respectively, translating to dozens and hundreds of species); and (iii) caused even greater disagreement (20-60%) in a downstream conservation application (species ranking). We conclude that the use of threats in comparative extinction risk analysis is important and increasing but currently in the early stages of development. Priorities for future studies include improving uptake, availability, quality and quantification of threat data, and developing analytical methods that yield more robust, relevant and tangible products for conservation applications.
Land-use change pushes biodiversity into human-modified landscapes, where native ecosystems are surrounded by anthropic land covers (ALCs). Yet, the ability of species to use these emerging covers remains poorly understood. We quantified the use of ALCs by primates worldwide, and analyzed species’ attributes that predict such use. Most species use secondary forests and tree plantations, while only few use human settlements. ALCs are used for foraging by at least 86 species with an important conservation outcome: those that tolerate heavily modified ALCs are 26% more likely to have stable or increasing populations than the global average for all primates. There is no phylogenetic signal in ALCs use. Compared to all primates on Earth, species using ALCs are less often threatened with extinction, but more often diurnal, medium or large-bodied, not strictly arboreal, and habitat generalists. These findings provide valuable quantitative information for improving management practices for primate conservation worldwide.
Phylogenetic information is becoming a recognized basis for evaluating conservation priorities, but associations between extinction risk and properties of a phylogeny such as diversification rates and phylogenetic lineage ages remain unclear. Limited taxon-specific analyses suggest that species in older lineages are at greater risk. We calculate quantitative properties of the mammalian phylogeny and model extinction risk as an ordinal index based on International Union for Conservation of Nature Red List categories. We test for associations between lineage age, clade size, evolutionary distinctiveness and extinction risk for 3308 species of terrestrial mammals. We show no significant global or regional associations, and three significant relationships within taxonomic groups. Extinction risk increases for evolutionarily distinctive primates and decreases with lineage age when lemurs are excluded. Lagomorph species (rabbits, hares and pikas) that have more close relatives are less threatened. We examine the relationship between net diversification rates and extinction risk for 173 genera and find no pattern. We conclude that despite being under-represented in the frequency distribution of lineage ages, species in older, slower evolving and distinct lineages are not more threatened or extinction-prone. Their extinction, however, would represent a disproportionate loss of unique evolutionary history.
To understand the functional meaning of morphological features, we need to relate what we know about morphology and ecology in a meaningful, quantitative framework. Closely related species usually share more phenotypic features than distant ones, but close relatives do not necessarily have the same ecologies. Rodents are the most diverse group of living mammals, with impressive ecomorphological diversification. We used museum collections and ecological literature to gather data on morphology, diet and locomotion for 208 species of rodents from different bioregions to investigate how morphological similarity and phylogenetic relatedness are associated with ecology. After considering differences in body size and shared evolutionary history, we find that unrelated species with similar ecologies can be characterized by a well-defined suite of morphological features. Our results validate the hypothesized ecological relevance of the chosen traits. These cranial, dental and external (e.g. ears) characters predicted diet and locomotion and showed consistent differences among species with different feeding and substrate use strategies. We conclude that when ecological characters do not show strong phylogenetic patterns, we cannot simply assume that close relatives are ecologically similar. Museum specimens are valuable records of species' phenotypes and with the characters proposed here, morphology can reflect functional similarity, an important component of community ecology and macroevolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.