ObjectivesVitamin D (VD) enhances the immune response against Mycobacterium tuberculosis in vitro, and VD deficiency has been described in patients with active tuberculosis (TB). However, the role of hypovitaminosis D in the pathogenesis of early TB infection acquisition is unclear. We aimed to evaluate the association of VD deficiency, season of the year, and latent TB infection in household contacts (HHC), given that this is a potentially modifiable condition often related to nutritional deficiencies and lack of sun exposure.MethodsWe prospectively enrolled new pulmonary TB cases (n = 107) and their HHC (n = 144) over a 2-year period in Santiago, Chile. We compared plasma 25-hydroxycholecalciferol (25OHD) levels and examined the influence of season, ethnic background, living conditions, and country of origin.ResultsOver 77% of TB cases and 62.6% of HHC had VD deficiency (<20 ng/ml). Median 25OHD concentration was significantly lower in TB cases than in HHC (11.7 vs. 18.2 ng/ml, p<0.0001). Migrants HHC had lower 25OHD levels than non-migrants (14.6 vs. 19.0 ng/ml, p = 0.026), and a trend towards a higher burden of latent TB infection (52.9% vs. 35.2%, p = 0.066). Multivariate analysis found VD deficiency in HHC was strongly associated with being sampled in winter/spring (adOR 25.68, 95%CI 7.35–89.7), corresponding to the seasons with lowest solar radiation exposure. Spring enrollment–compared with other seasons–was the chief risk factor for latent TB infection in HHC (adOR 3.14, 95%CI 1.28–7.69).ConclusionsHypovitaminosis D was highly prevalent in TB cases and also in HHC. A marked seasonality was found for both VD levels and latent TB in HHC, with winter being the season with lowest VD levels and spring the season with the highest risk of latent TB infection.
We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.