This article presents an evaluation of Prony method and its implementation considerations for motor current signal analysis diagnostics in rotor cage induction motors. The broken rotor bar fault signature in current signals is evaluated using Prony method, where its advantages in comparison with fast Fourier transform are presented. The broken rotor bar fault signature could occur during the life cycle operation of induction motors, so that is why an effective early detection estimation technique of this fault could prevent an insulation failure or heavy damage, leaving the motor out of service. First, an overview of cage winding defects in rotor cage induction motors is presented. Next, Prony method and its considerations for the implementation in current signature analysis are described. Then, the performance of Prony method using numerical simulations is evaluated. Lastly, an assessment of Prony method as a tool for current signal analysis diagnostics is performed using a laboratory test system where real signals of an induction motor with broken rotor bar operated with/without a variable frequency drive are analyzed. The summary results of the estimation (amplitudes and frequencies) are presented in the results and discussion section.
La representación Hamiltoniana generalizada de sistemas brinda una estructura que puede ser utilizada con ventaja en muchas ´areas, entre las cuales se puede mencionar el diseño de observadores y el diagnóstico de fallas basado en modelos. Muchos de los trabajos en estos temas tienen como punto de partida al sistema en forma Hamiltoniana generalizada y, en general, se omite la explicación de como llegar a esta representación, por ejemplo, a partir de un modelo no lineal basado en las ecuaciones de Euler-Lagrange. En este trabajo se presenta un análisis detallado de como es que se obtiene la representación Hamiltoniana generalizada de un sistema a partir de las n ecuaciones diferenciales de segundo orden obtenidas con el formalismo Euler-Lagrange. Con la finalidad de mostrar en lo particular, después del caso general, cómo se obtiene la representación Hamiltoniana generalizada, se presentan algunos casos de estudio.
This article presents a comparative analysis for the design considerations for a solar power generation transformer. One of the main existing problems in transformer manufacturing is in the renewable energy field, specifically the solar power generation, where the transformer connected to the inverter is operated under a certain harmonic content and operating conditions. The operating conditions of the transformer connected to the inverter are particularly unknown for each solar power plant; thus, the transformer will be subject to a particular harmonic content, which is defined by the inverter of the solar power plant. First, the fundamental calculations for solar power plant transformer and the proposed methodology for the design calculation of the distribution pad-mounted three phase transformer are presented. Then, a design study case is described where a distribution transformer and an inverter of a particular solar power plant are used for the analysis. Next, the transformer under analysis is modeled using finite element analysis in ANSYS Maxwell® software, where the transformer will be designed for a non-harmonic and harmonic content application. Lastly, the main design parameters, flux density, the core losses and the winding excitation voltage of the transformer are calculated and presented in results and discussion section.
La respuesta en frecuencia de sistemas lineales es una popular herramienta utilizada en el análisis y diseño de sistemas de control automático. La forma común de obtener la respuesta en frecuencia es a partir de la representación entrada-salida (función de transferencia) de un sistema. En este trabajo se presenta una manera novedosa para obtener la respuesta en frecuencia partiendo de la representación en el espacio de estados. El resultado es obtenido mediante la caracterización de la señal de entrada (función senoidal) mediante un sistema externo adicional, así como la evaluación del estado estacionario. La determinación de la fase y magnitud se obtiene de la solución a una ecuación de Sylvester reiteradamente para diferentes valores de la frecuencia en un intervalo específico junto con algunas manipulaciones algebraicas y uso de identidades trigonométricas. El procedimiento es mostrado mediante ejemplos y comparado con las maneras clásicas de obtener la respuesta en frecuencia.
This article presents an evaluation of Prony method estimation and its implementation considerations for surge comparison test application in turn insulation diagnostics for three-phase stator windings. Surge testing diagnostics compares recorded surge voltage signals of motor winding, and a diagnostic is then defined with a defined value of EAR (error area ratio), which evaluates the difference between signals to determine a turn insulation diagnostic. First, an overview of surge testing is presented. Next, the Prony method and the considerations for its implementation in surge testing are described. Then, a numerical simulation is used to define a simulated turn fault surge voltage signal, where its parameters can be obtained with Prony method estimation and compared with EAR to evaluate its performance. Lastly, recorded surge test signals from two tested motors are used to validate Prony method estimation application for surge test diagnostics, where twelve recorded surge signals for no-fault and fault conditions were analyzed. The summary results of the surge signals parameter estimation are presented in the results and discussion section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.