Rapid in vivo effects of 1,25-dihydroxyvitamin D3 on muscle calcium metabolism have been reported. In vitro studies have shown that exposure of vitamin D-deficient chick soleus muscles to the sterol for 1-10 minutes causes a significant stimulation of tissue 45Ca uptake which can be suppressed by Ca channel blockers. A parallel increase in muscle membrane calmodulin content that could be mimicked by forskolin was observed. Experiments were carried out to obtain information about the mechanism underlying the fast action of 1,25-dihydroxyvitamin D3. Like the sterol, forskolin (10 microns) rapidly increased (+48% at 5 min) soleus muscle 45Ca uptake and its effect could be reversed by nifedipine (50 microns). In agreement with these observations, 1,25-dihydroxyvitamin D3 markedly elevated tissue cAMP levels within 45 seconds to 5 minutes of treatment in a dose-dependent manner (10(-11)-10(-7) M). Moreover, incubation of isolated muscle microsomes with 1,25-dihydroxyvitamin D3 increased adenylate cyclase activity and caused a similar profile of stimulation of protein phosphorylation with [gamma-32P]-ATP as forskolin. Major changes were detected in proteins whose calmodulin binding ability has been previously shown to be increased by 1,25-dihydroxyvitamin D3. In addition, the calmodulin antagonists fluphenazine and compound 48/80 abolished the increase in muscle Ca uptake and membrane calmodulin content produced by the sterol. The results suggest that 1,25-dihydroxyvitamin D3 activates muscle Ca channels through a direct membrane action which involves cAMP-dependent protein phosphorylation and calmodulin binding.
1,25 Dihydroxyvitamin D3 has been shown to stimulate calcium fluxes across skeletal muscle membranes. The involvement of calmodulin in the effects of the metabolite was investigated. Primary cultures of chick embryo skeletal muscle myoblasts and soleus muscles from vitamin D-deficient or 1,25 (OH)2D3-treated chicks were used. Culture of myoblasts and vitamin D-deficient soleus with 1,25 (OH)2D3 (0.05 ng/ml) for 24 and 1 hour, respectively, significantly increased 45Ca uptake by the preparations. In the presence of the calmodulin antagonists flufenazine or compound 48/80 in the uptake medium, no differences between control and treated cultures were observed. The calmodulin content of myoblasts and soleus homogenates and subcellular fractions derived therefrom was estimated by measuring their capacity to stimulate calmodulin-depleted cAMP phosphodiesterase. No changes in total calmodulin cellular content could be detected in response to 1,25(OH)2D3. However, the sterol produced an increase in calmodulin levels of microsomes, mitochondria, and crude myofibrillar fraction and a proportional decrease in cytosolic calmodulin concentration. The 1,25(OH)2D3-dependent changes in calmodulin distribution among subcellular fractions of soleus muscle were observed either in vivo or in vitro. The effects in vitro were already detectable after 5 minutes of treatment with the sterol and parallel 1,25(OH)2D3-dependent changes in tissue Ca uptake. The results suggest that changes in calmodulin intracellular distribution may underly part of the mechanism by which 1,25(OH)2D3 affects muscle calcium transport.
Vitamin D3 and stigmasterol have been previously shown to stimulate growth, Ca2+ fluxes and calmodulin synthesis in Phaseolus vulgaris roots. In this study, these sterols (10−9M) were shown to accelerate the incorporation of [3H]‐thymidine into DNA in Phaseolus vulgaris (L. cv. Contraancha) root apices, similarly to a mixture of the mitogenic plant growth factors 2,4‐dichlorophenoxyacetic acid and kinetin (4.6 μM each). The effects of stigmasterol were blocked by flufenazine, a calmodulin antagonist. Analogously to stigmasterol, the plant hormones stimulated calmodulin synthesis as shown by double labeling of root proteins with [14C]‐leucine and [3H]‐leucine, respectively, followed by their separation on sodium dodecyl sulfate‐po‐lyacrylamide gels and a calmodulin affinity column, immunoblot analysis and cyclic AMP phosphodiesterase activation assays. The stimulation of root calmodulin formation by stigmasterol was abolished in the absence of Ca2+ in the incubation medium and was mimicked by the Ca2+ ionophore A–23187. The results suggest that the sterols, like plant mitogenic hormones, promote DNA synthesis, and that these compounds stimulate calmodulin synthesis as a consequence of their mitogenic activity. Ca2+ appears to mediate the action of the sterols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.