Abstract:The nucleolus and the prenucleolus are solution concepts for TU games based on the excess vector that can be associated to any payoff vector. Here we explore some solution concepts resulting from a payoff vector selection based also on the excess vector but by means of an assessment of their relative fairness different from that given by the lexicographical order. We take the departure consisting of choosing the payoffvector which minimizes the variance of the resulting excesses of the coalitions. This procedure yields two interesting solution concepts, both a prenucleolus-like and a nucleolus-like notion, depending on which set is chosen to set up the minimizing problem: the set of efficient payoff vectors or the set of inputations. These solution concepts, which, paralleling the prenucleolus and the nucleolus, we call least square prenucleolus and least square nucleolus, are easy to calculate and exhibit nice properties. Different axiomatic characterizations of the former are established, some of them by means of consistency for a reasonable reduced game concept.
A new characterization of the Banzhaf semivalue on the domain of monotonic simple games is given. We use the well-known valuation and dummy axioms plus two additional properties. The first one simply requires that the power-index be bigger for those players belonging to more winning coalitions. The second one is the proportionality axiom introduced by Owen in (1982) which is suitable for those simple games that represent an indirect voting process.
JEL classification: C71
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.