In this note we study a truncated additive normalization of the Banzhaf value. We are able to show that it corresponds to the Least Square nucleolus (LS-nucleolus), which was originally introduced as the solution of a constrained optimization problem (Ruiz et al., 1996). Thus, the main result provides an explicit expression that eases the computation and contributes to the understanding of the LS-nucleolus. Lastly, the result is extended to the broader family of Individually Rational Least Square values (Ruiz et al., 1998b).