Let $P$ be a set of $n\geq 3$ points in general position in the plane. The
edge disjointness graph $D(P)$ of $P$ is the graph whose vertices are all the
closed straight line segments with endpoints in $P$, two of which are adjacent
in $D(P)$ if and only if they are disjoint. We show that the connectivity of
$D(P)$ is at least
$\binom{\lfloor\frac{n-2}{2}\rfloor}{2}+\binom{\lceil\frac{n-2}{2}\rceil}{2}$,
and that this bound is tight for each $n\geq 3$.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.