Summary The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either CENP-A’s amino- or carboxy-terminal tails for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.
Centromeres are epigenetically defined by CENP-A nucleosomes. SNAP tagging is used to determine the composition of the heritable centromeric chromatin core. Assembly during G1 and stable maintenance at centromeres are restricted to CENP-A and H4. The CATD is the protein domain of CENP-A that is responsible for both features.
Human centromeres form primarily on α-satellite DNA but sporadically arise de novo at naive ectopic loci, creating neocentromeres. Centromere inheritance is driven primarily by chromatin containing the histone H3 variant CENP-A. Here, we report a chromosome engineering system for neocentromere formation in human cells and characterize the first experimentally induced human neocentromere at a naive locus. The spontaneously formed neocentromere spans a gene-poor 100-kb domain enriched in histone H3 lysine 9 trimethylated (H3K9me3). Long-read sequencing revealed this neocentromere was formed by purely epigenetic means and assembly of a functional kinetochore correlated with CENP-A seeding, eviction of H3K9me3 and local accumulation of mitotic cohesin and RNA polymerase II. At formation, the young neocentromere showed markedly reduced chromosomal passenger complex (CPC) occupancy and poor sister chromatin cohesion. However, long-term tracking revealed increased CPC assembly and low-level transcription providing evidence for centromere maturation over time.
The TTAGGG motif is common to two seemingly unrelated dimensions of chromatin function-the vertebrate telomere repeat and the promoter regions of many Schizosaccharomyces pombe genes, including all of those encoding canonical histones. The essential S. pombe protein Teb1 contains two Myb-like DNA binding domains related to those found in telomere proteins and binds the human telomere repeat sequence TTAGGG. Here, we analyse Teb1 binding throughout the genome and the consequences of reduced Teb1 function. Chromatin immunoprecipitation (ChIP)-on-chip analysis reveals robust Teb1 binding at many promoters, notably including all of those controlling canonical histone gene expression. A hypomorphic allele, teb1-1, confers reduced binding and reduced levels of histone transcripts. Prompted by previously suggested connections between histone expression and centromere identity, we examined localization of the centromeric histone H3 variant Cnp1 and found reduced centromeric binding along with reduced centromeric silencing. These data identify Teb1 as a master regulator of histone levels and centromere identity.
Whereas mammalian cells harbor two double strand telomeric repeat binding factors, TRF1 and TRF2, the fission yeast Schizosaccharomyces pombe has been thought to harbor solely the TRF1/TRF2 ortholog Taz1p to perform comparable functions. Here we report the identification of telomeric repeat binding factor 1 (Tbf1), a second TRF1/TRF2 ortholog in S. pombe. Like the Taz1p, the identified Tbf1p shares amino acid sequence similarity, as well as structural and functional characteristics, with the mammalian TRF1 and TRF2 proteins. This family of proteins shares a common architecture with two separate structural domains. An N-terminal domain is necessary and sufficient for the formation of homodimers, and a C-terminal MYB/homeodomain mediates sequence specific recognition of double-stranded telomeric DNA. The identified Tbf1p binds S. pombe telomeric DNA with high sequence specificity in vitro. Targeted deletion of the tbf1 gene reveals that it is essential for survival, and overexpression of the tbf1 gene leads to telomere elongation in vivo, which is dependent upon the MYB domain. These data suggest that fission yeast, like mammals, have two factors that bind double-stranded telomeric DNA and perform distinct roles in telomere length regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.