During development, the formation of mature neural circuits requires the selective elimination of inappropriate synaptic connections. Here we show that C1q, the initiating protein in the classical complement cascade, is expressed by postnatal neurons in response to immature astrocytes and is localized to synapses throughout the postnatal CNS and retina. Mice deficient in complement protein C1q or the downstream complement protein C3 exhibit large sustained defects in CNS synapse elimination, as shown by the failure of anatomical refinement of retinogeniculate connections and the retention of excess retinal innervation by lateral geniculate neurons. Neuronal C1q is normally downregulated in the adult CNS; however, in a mouse model of glaucoma, C1q becomes upregulated and synaptically relocalized in the adult retina early in the disease. These findings support a model in which unwanted synapses are tagged by complement for elimination and suggest that complement-mediated synapse elimination may become aberrantly reactivated in neurodegenerative disease.
RNAs are present in dendrites and may be used for local protein synthesis in response to synaptic activity. To begin to understand dendritic RNA targeting, we cloned a rat homolog of staufen, a Drosophila gene that participates in mRNA targeting during development. In hippocampal neurons, rat staufen protein displays a microtubule-dependent somatodendritic distribution pattern that overlaps with dendritic RNAs. To determine whether r-staufen is required for dendritic RNA targeting, we constructed a mutant version containing the RNA binding domains (stau-RBD) but lacking the C-terminal portion potentially involved in dendritic targeting. Stau-RBD expression was restricted to the cell bodies and proximal dendrites. Expression of stau-RBD significantly decreased, while overexpression of wild-type r-staufen increased, the amount of dendritic mRNA. Taken together, these results suggest that the rat staufen protein plays an important role in the delivery of RNA to dendrites.
SynGAP is a brain-specific ras GTPase-activating protein that is an abundant component of the signaling complex associated with the NMDA-type glutamate receptor. We generated mutant mice lacking synGAP to study its physiological role. Homozygous mutant mice die in the first few days after birth; however, neurons from mutant embryos can be maintained in culture. Here, we report that spine and synapse formation are accelerated in cultured mutant neurons, and the spines of mature mutant neurons are significantly larger than those of wild type. Clusters of PSD-95 and subunits of AMPA-type and NMDA-type glutamate receptors accumulate in spines of mutant neurons by day 10 in vitro, whereas in wild-type neurons they are still mostly located in dendritic shafts. The frequency and amplitude of miniature EPSCs are larger in mutant neurons at day 10 in vitro, confirming that they have more functional synapses. At day 21 in vitro, the spines of mutant neurons remain significantly larger than those of wild type. The mutant phenotype at day 10 in vitro can be rescued by introduction of recombinant wild-type synGAP on day 9. In contrast, introduction of mutant synGAP with a mutated GAP domain or lacking the terminal domain that binds to PSD-95 does not rescue the mutant phenotype, indicating that both domains play a role in control of spine formation. Thus, the GAP activity of synGAP and its association with PSD-95 are important for normal regulation of spine and synapse formation in hippocampal neurons.
Structural damage is evident both in the peripapillary and in macular areas. Vascular damage seems to be less prominent, as it was seen only for the glaucoma group and at the radial peripapillary plexus. Diagnostic abilities are excellent for structural variables, less so but still good for peripapillary VD, and poor for macular VD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.