Characterized by some of the highest naturally occurring sea surface temperatures, the Red Sea remains unexplored regarding the dynamics of heterotrophic prokaryotes. Over 16 months, we used flow cytometry to characterize the abundance and growth of four physiological groups of heterotrophic bacteria: membrane-intact (Live), high and low nucleic acid content (HNA and LNA) and actively respiring (CTC+) cells in shallow coastal waters. Chlorophyll a, dissolved organic matter (DOC and DON) concentrations, and their fluorescent properties were also measured as proxies of bottom-up control. We performed short-term incubations (6 days) with the whole microbial community (Community treatment), and with the bacterial community only after removing predators by filtration (Filtered treatment). Initial bacterial abundances ranged from 1.46 to 4.80 × 105 cells mL-1. Total specific growth rates in the Filtered treatment ranged from 0.76 to 2.02 d-1. Live and HNA cells displayed similar seasonal patterns, with higher values during late summer and fall (2.13 and 2.33 d-1, respectively) and lower in late spring (1.02 and 1.01 d-1, respectively). LNA cells were outgrown by the other physiological groups (0.33–1.08 d-1) while CTC+ cells (0.28–1.85 d-1) showed weaker seasonality. The Filtered treatment yielded higher bacterial abundances than the Community treatment in all but 2 of the incubations, and carrying capacities peaked in November 2016 (1.04 × 106 cells mL-1), with minimum values (3.61 × 105 cells mL-1) observed in May 2017. The high temperatures experienced from May through October 2016 (33.4 ± 0.4°C) did not constrain the growth of heterotrophic bacteria. Indeed, bacterial growth efficiencies were positively correlated with environmental temperature, reflecting the presence of more labile compounds (high DON concentrations resulting in lower C:N ratios) in summer. The overall high specific growth rates and the consistently higher carrying capacities in the Filtered treatment suggest that strong top-down control by protistan grazers was the likely cause for the low heterotrophic bacteria abundances.
Bacterioplankton play a pivotal role in marine ecosystems. However, their temporal dynamics and underlying control mechanisms are poorly understood in tropical regions such as the Red Sea. Here, we assessed the impact of bottom-up (resource availability) and top-down (viruses and heterotrophic nanoflagellates) controls on bacterioplankton abundances by weekly sampling a coastal central Red Sea site in 2017. We monitored microbial abundances by flow cytometry together with a set of environmental variables including temperature, salinity, dissolved organic and inorganic nutrients and chlorophyll a. We distinguished five groups of heterotrophic bacteria depending on their physiological properties relative nucleic acid content, membrane integrity and cell-specific respiratory activity, two groups of Synechococcus cyanobacteria and three groups of viruses. Viruses controlled heterotrophic bacteria for most of the year, as supported by a negative correlation between their respective abundances and a positive one between bacterial mortality rates and mean viral abundances. On the contrary, heterotrophic nanoflagellates abundance covaried with that of heterotrophic bacteria. Heterotrophic nanoflagellates showed preference for larger bacteria from both the high and low nucleic acid content groups. Our results demonstrate that top-down control is fundamental in keeping heterotrophic bacterioplankton abundances low (< 5 × 10 5 cells mL−1) in Red Sea coastal waters.
The ontogeny of swimming behaviour in sardine Sardina pilchardus larvae was studied, from hatching to 75 days post-hatch (dph), by measuring the critical swimming speed (U crit ) and observing locomotory behaviour. In addition, the effect of larval nutritional condition on U crit at the onset of their swimming abilities (20 to 25 dph) was evaluated by rearing larvae under 4 different feeding treatments. Diets consisted of different concentrations of dinoflagellates, rotifers and the copepod Acartia grani, and a wild plankton assemblage. Recently hatched larvae were mostly inactive, but from 2 dph onwards larvae started to swim freely in the rearing tank, and time spent swimming increased throughout ontogeny. Larvae younger than 20 dph (i.e. < 7.90 mm TL) could not swim for the entire adjustment period at the minimum current speed, but thereafter U crit increased significantly with larval age and length, reaching a maximum of 9.47 cm s −1 at 19.10 mm TL and 55 dph. Growth, survival and the nutritional condition of sardine larvae, assessed by the RNA residual index, were significantly higher for larvae reared with the high-concentration diet, contrary to the other derived nucleic acids indices (RNA/DNA and DNA/DW), which showed no differences between diets. Despite differences in the survival and growth rates of sardine larvae, U crit at the onset of swimming did not differ significantly among diets, but was significantly related to larval nutritional condition as assessed by the RNA residual index. Overall, our results show that early larval stages of sardines have poor swimming ability and probably rely on food patches in the wild to survive; however, close to metamorphosis (especially from 45 dph onwards), larvae spend most of the time swimming and are capable of resisting the mean current speeds of their natural environment, which may strongly enhance chances for survival. KEY WORDS: Ontogeny • Critical swimming speed • U crit • Sardina pilchardus • Nucleic acid derived indices • RNA/DNA • Foraging Resale or republication not permitted without written consent of the publisher
Shifts from coral to algal dominance are expected to increase in tropical coral reefs as a result of anthropogenic disturbances. The consequences for key ecosystem functions such as primary productivity, calcification, and nutrient recycling are poorly understood, particularly under changing environmental conditions. We used a novel in situ incubation approach to compare functions of coral‐ and algae‐dominated communities in the central Red Sea bimonthly over an entire year. In situ gross and net community primary productivity, calcification, dissolved organic carbon fluxes, dissolved inorganic nitrogen fluxes, and their respective activation energies were quantified to describe the effects of seasonal changes. Overall, coral‐dominated communities exhibited 30% lower net productivity and 10 times higher calcification than algae‐dominated communities. Estimated activation energies indicated a higher thermal sensitivity of coral‐dominated communities. In these communities, net productivity and calcification were negatively correlated with temperature (>40% and >65% reduction, respectively, with +5°C increase from winter to summer), whereas carbon losses via respiration and dissolved organic carbon release more than doubled at higher temperatures. In contrast, algae‐dominated communities doubled net productivity in summer, while calcification and dissolved organic carbon fluxes were unaffected. These results suggest pronounced changes in community functioning associated with coral‐algal phase shifts. Algae‐dominated communities may outcompete coral‐dominated communities because of their higher productivity and carbon retention to support fast biomass accumulation while compromising the formation of important reef framework structures. Higher temperatures likely amplify these functional differences, indicating a high vulnerability of ecosystem functions of coral‐dominated communities to temperatures even below coral bleaching thresholds. Our results suggest that ocean warming may not only cause but also amplify coral–algal phase shifts in coral reefs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.