Antimicrobial peptides (AMPs) are part of the innate immune system and are generally defined as cationic, amphipathic peptides, with less than 50 amino acids, including multiple arginine and lysine residues. The human cathelicidin antimicrobial peptide LL37 can be found at different concentrations in many different cells, tissues and body fluids and has a broad spectrum of antimicrobial and immunomodulatory activities. The healing of wound is a complex process that involves different steps: hemostasis, inflammation, remodeling/granulation tissue formation and re-epithelialization. Inflammation and angiogenesis are two fundamental physiological conditions implicated in this process. We have recently developed a new method for the expression and purification of recombinant LL37. In this work, we show that the recombinant peptide P-LL37 with a N-terminus proline preserves its immunophysiological properties in vitro and in vivo. P-LL37 neutralized the activation of macrophages by lipopolysaccharide (LPS). Besides, the peptide induced proliferation, migration and tubule-like structures formation by endothelial cells. Wound healing experiments were performed in dexamethasone-treated mice to study the effect of LL37 on angiogenesis and wound regeneration. The topical application of synthetic and recombinant LL37 increased vascularization and re-epithelialization. Taken together, these results clearly demonstrate that LL37 may have a key role in wound regeneration through vascularization.
The bacterial cellulose (BC) secreted by Gluconacetobacter xylinus is a network of pure cellulose nanofibres which has high crystallinity, wettability and mechanical strength. These characteristics make BC an excellent material for tissue-engineering constructs, noteworthy for artificial vascular grafts. In this work, the in vivo biocompatibility of BC membranes produced by two G. xylinus strains was analyzed through histological analysis of long-term subcutaneous implants in the mice. The BC implants caused a mild and benign inflammatory reaction that decreased along time and did not elicit a foreign body reaction. A tendency to calcify over time, which may be related to the porosity of the BC implants, was observed, especially among the less porous BC-1 implants. In addition, the potential toxicity of BC nanofibres - obtained by chemical-mechanical treatment of BC membranes - subcutaneously implanted in mice was analysed through bone marrow flow cytometry and histological analyses. At 2 and 4 months post-implantation, the nanofibres implants were found to accumulate intracellularly, in subcutaneous foamy macrophages aggregates. Moreover, no differences were observed between the controls and implanted animals in thymocyte populations and in B lymphocyte precursors and myeloid cells in the bone marrow.
Type 1 diabetes mellitus is responsible for metabolic dysfunction, accompanied by chronic inflammation, oxidative stress, and endothelium dysfunction, and is often associated with impaired wound healing. Phenol-rich food improves vascular function, contributing to diabetes prevention. This study has evaluated the effect of phenol-rich beverage consumption in diabetic rats on wound healing, through angiogenesis, inflammation, and oxidative stress modulation. A wound-healing assay was performed in streptozotocin-induced diabetic Wistar rats drinking water, 5% ethanol, and stout beer with and without 10 mg/L xanthohumol (1), for a five-week period. Wounded skin microvessel density was reduced to normal values upon consumption of 1 in diabetic rats, being accompanied by decreased serum VEGF-A and inflammatory markers (IL-1β, NO, N-acetylglucosaminidase). Systemic glutathione and kidney and liver H2O2, 3-nitrotyrosine, and protein carbonylation also decreased to healthy levels after treatment with 1, implying an improvement in oxidative stress status. These findings suggest that consumption of xanthohumol (1) by diabetic animals consistently decreases inflammation and oxidative stress, allowing neovascularization control and improving diabetic wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.